ISSN 1671-5411 CN 11-5329/R
Volume 20 Issue 5
May  2023
Turn off MathJax
Article Contents
Please cite this article as: CHENG WZ, WANG WH, DENG AP, DANG X, LIU C, WANG XC, LI JY, JIN S. Identification of an LDLR variant in a Chinese familial hypercholesterolemia and its relation to ROS/NLRP3-Mediated pyroptosis in hepatic cells. J Geriatr Cardiol 2023; 20(5): 341−349. DOI: 10.26599/1671-5411.2023.05.003
Citation: Please cite this article as: CHENG WZ, WANG WH, DENG AP, DANG X, LIU C, WANG XC, LI JY, JIN S. Identification of an LDLR variant in a Chinese familial hypercholesterolemia and its relation to ROS/NLRP3-Mediated pyroptosis in hepatic cells. J Geriatr Cardiol 2023; 20(5): 341−349. DOI: 10.26599/1671-5411.2023.05.003

Identification of an LDLR variant in a Chinese familial hypercholesterolemia and its relation to ROS/NLRP3-Mediated pyroptosis in hepatic cells

doi: 10.26599/1671-5411.2023.05.003
*The authors contributed equally to this manuscript
More Information
  •  BACKGROUND  Familial hypercholesterolemia (FH) is a common autosomal dominant hereditary disease. Its early diagnosis and intervention significantly improve the patient’s quality of life. However, there are few types of research on the FH pathogenic genes in China.  METHODS  In this study, we recruited a family diagnosed with FH and used whole exome sequencing (WES) to analyze the proband variants. Intracellular cholesterol level, reactive oxygen species (ROS) level, and the expression of pyroptosis-related genes were detected after overexpression of wild-type or variant LDLR in L02 cells.  RESULTS A heterozygous missense variant predicted to be deleterious to LDLR (c.1879G > A, p.Ala627Thr) was identified in the proband. Mechanistically, intracellular cholesterol level, ROS level, and the expression of pyroptosis-related genes, nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome and components (caspase 1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3), gasdermin D (GSDMD), interleukin (IL) -18, IL-1β was elevated in the variant LDLR group, which was attenuated by inhibition of ROS.  CONCLUSIONS  FH is associated with a variant (c.1879G>A, p.Ala627Thr) in the LDLR gene. Regarding the mechanism, the ROS/NLRP3-mediated pyroptosis in hepatic cells may contribute to the pathogenesis of the LDLR variant.
  • loading
  • [1]
    Amersfoort J, Schaftenaar FH, Douna H, et al. Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovasc Res 2021; 117: 1309−1324. doi: 10.1093/cvr/cvaa208
    Foody JM, Vishwanath R. Familial hypercholesterolemia/autosomal dominant hypercholesterolemia: Molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipidol 2016; 10: 970−986. doi: 10.1016/j.jacl.2016.04.009
    Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Gene 2003; 34: 154−156. doi: 10.1038/ng1161
    Alnouri F, Athar M, Al-Allaf FA, et al. Novel combined variants of LDLR and LDLRAP1 genes causing severe familial hypercholesterolemia. Atherosclerosis 2018; 277: 425−433. doi: 10.1016/j.atherosclerosis.2018.06.878
    Pirillo A, Garlaschelli K, Arca M, et al. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. Atheroscler Suppl 2017; 29: 17−24. doi: 10.1016/j.atherosclerosissup.2017.07.002
    Danyel M, Ott CE, Grenkowitz T, et al. Evaluation of the role of STAP1 in Familial Hypercholesterolemia. Sci Rep 2019; 9: 11995. doi: 10.1038/s41598-019-48402-y
    Cao YX, Wu NQ, Sun D, et al. Application of expanded genetic analysis in the diagnosis of familial hypercholesterolemia in patients with very early-onset coronary artery disease. J Transl Med 2018; 16: 345. doi: 10.1186/s12967-018-1737-7
    de Paiva Silvino JP, Jannes CE, Tada MT, et al. Cascade screening and genetic diagnosis of familial hypercholesterolemia in clusters of the Southeastern region from Brazil. Mol Biol Rep 2020; 47: 9279−9288. doi: 10.1007/s11033-020-06014-0
    Bandyopadhyay D, Ashish K, Hajra A, et al. Cardiovascular Outcomes of PCSK9 Inhibitors: With Special Emphasis on Its Effect beyond LDL-Cholesterol Lowering. J Lipids 2018; 2018: 3179201.
    Flannick J, Mercader JM, Fuchsberger C, et al. Exome sequencing of 20, 791 cases of type 2 diabetes and 24, 440 controls. Nature 2019; 570: 71−76. doi: 10.1038/s41586-019-1231-2
    Jelin AC, Vora N. Whole Exome Sequencing: Applications in Prenatal Genetics. Obstet Gynecol Clin North Am 2018; 45: 69−81. doi: 10.1016/j.ogc.2017.10.003
    Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol 2020; 188: 367−382. doi: 10.1111/bjh.16249
    Xiang R, Fan LL, Lin MJ, et al. The genetic spectrum of familial hypercholesterolemia in the central south region of China. Atherosclerosis 2017; 258: 84−88. doi: 10.1016/j.atherosclerosis.2017.02.007
    van den Boomen DJH, Sienkiewicz A, Berlin I, et al. A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat Commun 2020; 11: 5559−5559. doi: 10.1038/s41467-020-19032-0
    Ochiai A, Miyata S, Shimizu M, et al. Piperine induces hepatic low-density lipoprotein receptor expression through proteolytic activation of sterol regulatory element-binding proteins. PloS one 2015; 10: e0139799. doi: 10.1371/journal.pone.0139799
    Bjune K, Wierød L, Naderi S. Inhibitors of AKT kinase increase LDL receptor mRNA expression by two different mechanisms. PloS one 2019; 14: e0218537−e0218537. doi: 10.1371/journal.pone.0218537
    Ho CM, Ho SL, Jeng YM, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) 2019; 16: 7. doi: 10.1186/s12950-019-0211-5
    Burillo-Sanz S, Montes-Cano MA, García-Lozano JR, et al. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A Next Generation Sequencing approach. Sci Rep 2017; 7: 8453−8453. doi: 10.1038/s41598-017-09164-7
    Qiu T, Pei P, Yao X, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis 2018; 9: 946−946. doi: 10.1038/s41419-018-1004-0
    Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ (Clinical research ed) 1991; 303: 893−896. doi: 10.1136/bmj.303.6807.893
    Iacovazzo D, Flanagan SE, Walker E, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 2018; 115: 1027−1032. doi: 10.1073/pnas.1712262115
    Pace NP, Craus J, Felice A, Vassallo J. Case Report: Identification of an HNF1B p. Arg527Gln mutation in a Maltese patient with atypical early onset diabetes and diabetic nephropathy. BMC Endocr Disord 2018; 18: 28.
    Sunyaev S, Ramensky V, Bork P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16: 198−200. doi: 10.1016/S0168-9525(00)01988-0
    Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep 2013; 15: 313. doi: 10.1007/s11926-012-0313-z
    Sun LY, Zhang YB, Jiang L, et al. Identification of the gene defect responsible for severe hypercholesterolaemia using whole-exome sequencing. Sci Rep 2015; 5: 11380. doi: 10.1038/srep11380
    Brunham LR, Ruel I, Aljenedil S, et al. Canadian cardiovascular society position statement on familial hypercholesterolemia: update 2018. Can J Cardiol 2018; 34: 1553−1563. doi: 10.1016/j.cjca.2018.09.005
    Cayo MA, Mallanna SK, Di Furio F, et al. A drug screen using human ipsc-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell 2017; 20: 478−489.e475. doi: 10.1016/j.stem.2017.01.011
    van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol 2017; 28: 241−247. doi: 10.1097/MOL.0000000000000411
    Cheng X, Ding J, Zheng F, et al. Two mutations in LDLR gene were found in two Chinese families with familial hypercholesterolemia. Mol Biol Rep 2009; 36: 2053−2057. doi: 10.1007/s11033-008-9416-z
    Oommen D, Kizhakkedath P, Jawabri AA, et al. Proteostasis regulation in the endoplasmic reticulum: an emerging theme in the molecular pathology and therapeutic management of familial hypercholesterolemia. Front Genet 2020; 11: 570355. doi: 10.3389/fgene.2020.570355
    Sun XM, Patel DD, Webb JC, et al. Familial hypercholesterolemia in China. Identification of mutations in the LDL-receptor gene that result in a receptor-negative phenotype. Arterioscler Thromb 1994; 14: 85−94.
    Jiang L, Sun LY, Dai YF, et al. The distribution and characteristics of LDL receptor mutations in China: A systematic review. Sci Rep 2015; 5: 17272. doi: 10.1038/srep17272
  • JGC-202209-026-R1-supp.pdf
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (173) PDF downloads(46) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint