Citation: | Please cite this article as: XU R, WU J, YANG CJ, KANG L, JI YY, LI C, DING ZW, ZOU YZ. A circRNA–miRNA–mRNA network analysis underlying pathogenesis of human heart failure. J Geriatr Cardiol 2023; 20(5): 350−360. DOI: 10.26599/1671-5411.2023.05.004 |
[1] |
Tanai E, Frantz S. Pathophysiology of Heart Failure. Compr Physiol 2015; 6: 187−214.
|
[2] |
Birks EJ. Molecular changes after left ventricular assist device support for heart failure. Circ Res 2013; 113: 777−791. doi: 10.1161/CIRCRESAHA.113.301413
|
[3] |
Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail 2019; 7: 447−456. doi: 10.1016/j.jchf.2019.03.005
|
[4] |
Tschöpe C, Kherad B, Klein O, et al. Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail 2019; 21: 14−22. doi: 10.1002/ejhf.1349
|
[5] |
Chen Y, Li C, Tan C, Liu X. Circular RNAs: a new frontier in the study of human diseases. J Med Genet 2016; 53: 359−365. doi: 10.1136/jmedgenet-2016-103758
|
[6] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384−388. doi: 10.1038/nature11993
|
[7] |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large classof animal RNAs with regulatory potency. Nature 2013; 495: 333−338. doi: 10.1038/nature11928
|
[8] |
Xing L, Shi Q, Zheng K, et al. Ultrasound-mediated microbubble destruction (ummd) facilitates the deliveryof ca19-9 targeted and paclitaxel loaded mpeg-plga-pll nanoparticles inpancreatic cancer. Theranostics 2016; 6: 1573−1587. doi: 10.7150/thno.15164
|
[9] |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22: 256−64. doi: 10.1038/nsmb.2959
|
[10] |
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 2017; 27: 626−641. doi: 10.1038/cr.2017.31
|
[11] |
Geng HH, Li R, Su YM, et al. The Circular RNA Cdr1 as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 2016; 11: e0151753. doi: 10.1371/journal.pone.0151753
|
[12] |
Li MY, Ding W, Tariq MA, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 2018; 8: 5855−5869. doi: 10.7150/thno.27285
|
[13] |
Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 2017; 24: 1111−1120. doi: 10.1038/cdd.2017.61
|
[14] |
Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy viamodulation of the Pink1/ FAM65B pathway. Cell Death Differ 2019; 26: 1299−1315. doi: 10.1038/s41418-018-0206-4
|
[15] |
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38: 1402−1412.
|
[16] |
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37: 2602−2611. doi: 10.1093/eurheartj/ehv713
|
[17] |
Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017; 7: 40342. doi: 10.1038/srep40342
|
[18] |
Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 2017; 487: 769−775. doi: 10.1016/j.bbrc.2017.04.044
|
[19] |
Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 2017; 7: 39918. doi: 10.1038/srep39918
|
[20] |
Salgado-Somoza A, Zhang L, Vausort M, Devaux Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 2017; 17: 33−36.
|
[21] |
Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 2017; 39: 454−459. doi: 10.1080/10641963.2016.1273944
|
[22] |
Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics Proteomics Bioinformatics 2016; 14: 216−223. doi: 10.1016/j.gpb.2016.02.003
|
[23] |
Werfel S, Nothjunge S, Schwarzmayr T, et al. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 2016; 98: 103−107. doi: 10.1016/j.yjmcc.2016.07.007
|
[24] |
Khan MA, Reckman YJ, Aufiero S, et al. RBM20 regulates circular RNA production from the titin gene. Circ Res 2016; 119: 996−1003. doi: 10.1161/CIRCRESAHA.116.309568
|
[25] |
Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017; 113: 298−309.
|
[26] |
Lei W, Feng T, Fang X, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 2018; 9: 56. doi: 10.1186/s13287-018-0793-5
|
[27] |
Hu M, Wei X, Li M, et al. Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease. Anatol J Cardiol 2019; 21: 2−10.
|
[28] |
Mi H, Muruganujan A, Huang X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14. 0). Nat Protoc 2019; 14: 703−721. doi: 10.1038/s41596-019-0128-8
|
[29] |
Jupe S, Fabregat A, Hermjakob H. Expression data analysis with Reactome. Curr Protoc Bioinformatics 2015; 49: 8.20.1−9.
|
[30] |
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4.
|
[31] |
Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 2012; 7: 670−85. doi: 10.1038/nprot.2012.004
|
[32] |
Zou F, Ding Z, Jiang J, et al. Confirmation and preliminary analysis of circRNAs potentially involved in human intervertebral disc degeneration. Mol Med Rep 2017; 16: 9173−9180. doi: 10.3892/mmr.2017.7718
|
[33] |
Li Y, Jiang Q, Ding Z, et al. Identification of a common different gene expression signature in ischemic cardiomyopathy. Genes (Basel) 2018; 9: 56. doi: 10.3390/genes9010056
|
[34] |
Watson CJ, Gupta SK, O’Connell E, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 2015; 17: 405−415. doi: 10.1002/ejhf.244
|
[35] |
Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 2015; 17: 393−404. doi: 10.1002/ejhf.223
|
[36] |
Ding Z, Peng J, Liang Y, et al. Evolution of vertebrate ryanodine receptors family in relation to functional divergence and conservation. Int Heart J 2017; 58: 969−977. doi: 10.1536/ihj.16-558
|
[37] |
Zou Y, Liang Y, Gong H, et al. Ryanodine receptor type 2 is required for the development of pressure overload-induced cardiac hypertrophy. Hypertension 2011; 58: 1099−1110. doi: 10.1161/HYPERTENSIONAHA.111.173500
|
[38] |
Ding Z, Yuan J, Liang Y, et al. Ryanodine receptor type 2 plays a role in the development of cardiac fibrosis under mechanical stretch through TGFβ-1. Int Heart J 2017; 58: 957−961. doi: 10.1536/ihj.16-572
|
[39] |
Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 2017; 18: 984−992.
|
[40] |
Yu D, Li Y, Ming Z, et al. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. Peer J 2018; 6: e5011. doi: 10.7717/peerj.5011
|
[41] |
Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev 2018; 32: 639−644. doi: 10.1101/gad.314856.118
|
[42] |
Gruner H, Cortés-López M, Cooper DA, et al. CircRNA accumulation in the aging mouse brain. Sci Rep 2016; 6: 38907. doi: 10.1038/srep38907
|
[43] |
Siede D, Rapti K, Gorska AA, et al. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol 2017; 109: 48−56. doi: 10.1016/j.yjmcc.2017.06.015
|
[44] |
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, et al. Heart inflammation: immune cells roles and roads to the heart. Am J Pathol 2019; 189: 1482−1494. doi: 10.1016/j.ajpath.2019.04.009
|
[45] |
Sánchez-Trujillo L, Vázquez-Garza E, Castillo EC, et al. Role of adaptive immunity in the development and progression of heart failure: new evidence. Arch Med Res 2017; 48: 1−11. doi: 10.1016/j.arcmed.2016.12.008
|
[46] |
Duan Q, Yang L, Gong W, et al. MicroRNA-214 Is Upregulated in Heart Failure Patients and Suppresses XBP1-Mediated Endothelial Cells Angiogenesis. J Cell Physiol 2015; 230: 1964−1973. doi: 10.1002/jcp.24942
|
[47] |
Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124: 1537−1547. doi: 10.1161/CIRCULATIONAHA.111.030932
|
[48] |
Yuan J, Liu H, Gao W, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics 2018; 8: 2565−2582. doi: 10.7150/thno.22878
|
[49] |
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66: 22−37. doi: 10.1016/j.molcel.2017.02.017
|
[50] |
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66: 9−21. doi: 10.1016/j.molcel.2017.02.021
|