ISSN 1671-5411 CN 11-5329/R
Volume 20 Issue 5
May  2023
Turn off MathJax
Article Contents
Please cite this article as: Bukhari S. Cardiac amyloidosis: state-of-the-art review. J Geriatr Cardiol 2023; 20(5): 361−375. DOI: 10.26599/1671-5411.2023.05.006
Citation: Please cite this article as: Bukhari S. Cardiac amyloidosis: state-of-the-art review. J Geriatr Cardiol 2023; 20(5): 361−375. DOI: 10.26599/1671-5411.2023.05.006

Cardiac amyloidosis: state-of-the-art review

doi: 10.26599/1671-5411.2023.05.006
More Information
  • Cardiac amyloidosis (CA) is caused by deposition of amyloid fibrils in the myocardium and has two main subtypes, transthyretin cardiac amyloidosis (ATTR) and immunoglobulin light chain cardiac amyloidosis (AL). ATTR is further differentiated into wild-type (wtATTR) and hereditary (hATTR), depending on the absence or presence of mutation in the transthyretin gene. The increased recognition of disease with the improvement in diagnostic armamentarium and serendipitous advancements in the therapeutic landscape have changed the status of CA from being a rare and untreatable disease to being a not-so-rare and treatable disease. Both ATTR and AL have certain clinical aspects that can provide early clues for the disease. While electrocardiography followed by echocardiography and subsequently cardiac magnetic resonance can raise suspicion for CA, the definitive diagnosis of ATTR is non-invasively established by bone scintigraphy while that of AL always needs histological confirmation. Severity of CA can be gauged by serum biomarker-based staging of both ATTR and AL. ATTR therapies work by silencing or stabilizing TTR or by degrading amyloid fibrils, while AL is managed with anti-plasma cell therapies and autologous stem cell transplant.
  • loading
  • [1]
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003; 349: 583−596. doi: 10.1056/NEJMra023144
    Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation 2005; 112: 2047−2060. doi: 10.1161/CIRCULATIONAHA.104.489187
    Masri A, Bukhari S, Eisele YS, et al. Molecular imaging of cardiac amyloidosis. J Nucl Med 2020; 61: 965−970. doi: 10.2967/jnumed.120.245381
    González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015; 36: 2585−2594. doi: 10.1093/eurheartj/ehv338
    Castaño A, Narotsky DL, Hamid N, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 2017; 38: 2879−2887. doi: 10.1093/eurheartj/ehx350
    Maurizi N, Rella V, Fumagalli C, et al. Prevalence of cardiac amyloidosis among adult patients referred to tertiary centres with an initial diagnosis of hypertrophic cardiomyopathy. Int J Cardiol 2020; 300: 191−195. doi: 10.1016/j.ijcard.2019.07.051
    Tanskanen M, Peuralinna T, Polvikoski T, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 2008; 40: 232−239. doi: 10.1080/07853890701842988
    Ravichandran S, Lachmann HJ, Wechalekar AD. Epidemiologic and survival trends in amyloidosis, 1987-2019. N Engl J Med 2020; 382: 1567−1568. doi: 10.1056/NEJMc1917321
    Kyle RA, Linos A, Beard CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992; 79: 1817−1822. doi: 10.1182/blood.V79.7.1817.1817
    Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A 2010; 107: 4188−4193. doi: 10.1073/pnas.0912263107
    Palladini G, Hegenbart U, Milani P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014; 124: 2325−2332.
    Grogan M, Scott CG, Kyle RA, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 2016; 68: 1014−1020. doi: 10.1016/j.jacc.2016.06.033
    Pilebro B, Suhr OB, Näslund U, et al. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci 2016; 121: 17−24. doi: 10.3109/03009734.2015.1122687
    Buxbaum J, Jacobson DR, Tagoe C, et al. Transthyretin V122I in African Americans with congestive heart failure. J Am Coll Cardiol 2006; 47: 1724−1725. doi: 10.1016/j.jacc.2006.01.042
    Reilly MM, Staunton H, Harding AE. Familial amyloid polyneuropathy (TTR ala 60) in north west Ireland: a clinical, genetic, and epidemiological study. J Neurol Neurosurg Psychiatry 1995; 59: 45−49. doi: 10.1136/jnnp.59.1.45
    Bonaïti B, Olsson M, Hellman U, et al. TTR familial amyloid polyneuropathy: does a mitochondrial polymorphism entirely explain the parent-of-origin difference in penetrance? Eur J Hum Genet 2010; 18: 948−952. doi: 10.1038/ejhg.2010.36
    Waddington-Cruz M, Wixner J, Amass L, et al. THAOS investigators. Characteristics of patients with late- vs. early-onset Val30Met Transthyretin Amyloidosis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Neurol Ther 2021; 10: 753−766.
    Maurer MS, Hanna M, Grogan M, et al. THAOS Investigators. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol 2016; 68: 161−172. doi: 10.1016/j.jacc.2016.03.596
    Dungu JN, Valencia O, Pinney JH, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 7: 133−142. doi: 10.1016/j.jcmg.2013.08.015
    Griffin JM, Rosenblum H, Maurer MS. Pathophysiology and therapeutic approaches to cardiac amyloidosis. Circ Res 2021; 128: 1554−1575. doi: 10.1161/CIRCRESAHA.121.318187
    Bukhari S, Oliveros E, Parekh H, et al. Epidemiology, mechanisms, and management of atrial fibrillation in cardiac amyloidosis. Curr Probl Cardiol 2022; 48: 101571.
    Oye M, Dhruva P, Kandah F, et al. Cardiac amyloid presenting as cardiogenic shock: case series. Eur Heart J Case Rep 2021; 5: ytab252. doi: 10.1093/ehjcr/ytab252
    Mueller PS, Edwards WD, Gertz MA. Symptomatic ischemic heart disease resulting from obstructive intramural coronary amyloidosis. Am J Med 2000; 109: 181−188. doi: 10.1016/S0002-9343(00)00471-X
    Dorbala S, Vangala D, Bruyere J Jr, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2014; 2: 358−367. doi: 10.1016/j.jchf.2014.03.009
    Nitsche C, Scully PR, Patel KP, et al. Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J Am Coll Cardiol 2021; 77: 128−139.
    Milandri A, Farioli A, Gagliardi C, et al. Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies. Eur J Heart Fail 2020; 22: 507−515. doi: 10.1002/ejhf.1742
    Sperry BW, Reyes BA, Ikram A, et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J Am Coll Cardiol 2018; 72: 2040−2050. doi: 10.1016/j.jacc.2018.07.092
    Westin O, Fosbøl EL, Maurer MS et al. Screening for cardiac amyloidosis 5 to 15 years after surgery for bilateral carpal tunnel syndrome. J Am Coll Cardiol 2022; 80: 967−977. doi: 10.1016/j.jacc.2022.06.026
    Maurer MS, Smiley D, Simsolo E, et al. Analysis of lumbar spine stenosis specimens for identification of amyloid. J Am Geriatr Soc 2022; 70: 3538−3548. doi: 10.1111/jgs.17976
    Geller HI, Singh A, Alexander KM, et al. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis. JAMA 2017; 318: 962−963. doi: 10.1001/jama.2017.9236
    Rubin J, Alvarez J, Teruya S, et al. Hip and knee arthroplasty are common among patients with transthyretin cardiac amyloidosis, occurring years before cardiac amyloid diagnosis: can we identify affected patients earlier? Amyloid 2017; 24: 226−230.
    Dember LM. Amyloidosis-associated kidney disease. J Am Soc Nephrol 2006; 17: 3458−3471. doi: 10.1681/ASN.2006050460
    Sharma A, Bansal S, Jain R. Unique morphology of intratubular light chain casts in multiple myeloma: the amyloid cast nephropathy. Indian J Pathol Microbiol 2014; 57: 629−631. doi: 10.4103/0377-4929.142712
    Cipriani A, De Michieli L, Porcari A et al. Low QRS voltages in cardiac amyloidosis: clinical correlates and prognostic value. JACC Cardio Oncol 2022; 4: 458−470. doi: 10.1016/j.jaccao.2022.08.007
    Cyrille NB, Goldsmith J, Alvarez J, et al. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am J Cardiol 2014; 114: 1089−1093. doi: 10.1016/j.amjcard.2014.07.026
    Dungu J, Sattianayagam PT, Whelan CJ, et al. The electrocardiographic features associated with cardiac amyloidosis of variant transthyretin isoleucine 122 type in Afro-Caribbean patients. Am Heart J 2012; 164: 72−79. doi: 10.1016/j.ahj.2012.04.013
    Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 2005; 95: 535−537. doi: 10.1016/j.amjcard.2004.10.028
    Das MK, Khan B, Jacob S et al. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 2006; 113: 2495−2501. doi: 10.1161/CIRCULATIONAHA.105.595892
    González-López E, Gagliardi C, Dominguez F, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J 2017; 38: 1895−1904. doi: 10.1093/eurheartj/ehx043
    Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol 2016; 68: 1323−1341. doi: 10.1016/j.jacc.2016.06.053
    Nagy D, Révész K, Peskó G, et al. Cardiac amyloidosis with normal wall thickness: prevalence, clinical characteristics and outcome in a retrospective analysis. Biomedicines 2022; 10: 1765. doi: 10.3390/biomedicines10071765
    Vermeer AMC, Janssen A, Boorsma PC, et al. Transthyretin amyloidosis: a phenocopy of hypertrophic cardiomyopathy. Amyloid 2017; 24: 87−91.
    López-Sainz Á, de Haro-Del Moral FJ, Dominguez F, et al. Prevalence of cardiac amyloidosis among elderly patients with systolic heart failure or conduction disorders. Amyloid 2019; 26: 156−163.
    Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging 2017; 10: e005588.
    Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012; 98: 1442−1448. doi: 10.1136/heartjnl-2012-302353
    Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186−193. doi: 10.1161/01.CIR.0000152819.97857.9D
    Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132: 1570−1579. doi: 10.1161/CIRCULATIONAHA.115.016567
    Yang L, Krefting I, Gorovets A, et al. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology 2012; 265: 248−253. doi: 10.1148/radiol.12112783
    Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488−497. doi: 10.1016/j.jcmg.2012.11.013
    Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015; 36: 244−251. doi: 10.1093/eurheartj/ehu444
    Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 2019; 12: 810−819. doi: 10.1016/j.jcmg.2018.02.006
    Banypersad SM, Sado DM, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013; 6: 34−39.
    Martinez-Naharro A, Abdel-Gadir A, Treibel TA, et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc Imaging 2018; 11: 152−154. doi: 10.1016/j.jcmg.2017.02.012
    Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol 2018; 71: 2919−2931. doi: 10.1016/j.jacc.2018.03.536
    Rapezzi C, Gagliardi C, Milandri A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J Nucl Cardiol 2019; 26: 1638−1641. doi: 10.1007/s12350-018-1235-6
    Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 2016; 25: 413−417. doi: 10.1016/j.carpath.2016.07.001
    Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005; 46: 1076−1084. doi: 10.1016/j.jacc.2005.05.073
    Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016; 133: 2404−2412. doi: 10.1161/CIRCULATIONAHA.116.021612
    Bokhari S, Castaño A, Pozniakoff T, et al. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013; 6: 195−201. doi: 10.1161/CIRCIMAGING.112.000132
    Masri A, Bukhari S, Ahmad S, et al. Efficient 1-hour technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 2020; 13: e010249. doi: 10.1161/CIRCIMAGING.119.010249
    Falk RH, Lee VW, Rubinow A, et al. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am J Cardiol 1983; 51: 826−830. doi: 10.1016/S0002-9149(83)80140-4
    Musumeci MB, Cappelli F, Russo D, et al. Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging 2020; 13: 1314−1321. doi: 10.1016/j.jcmg.2019.10.015
    Ardehali H, Qasim A, Cappola T, et al. Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 2004; 147: 919−923. doi: 10.1016/j.ahj.2003.09.020
    Holzmann M, Nicko A, Kühl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008; 118: 1722−1728. doi: 10.1161/CIRCULATIONAHA.107.743427
    Guy CD, Jones CK. Abdominal fat pad aspiration biopsy for tissue confirmation of systemic amyloidosis: specificity, positive predictive value, and diagnostic pitfalls. Diagn Cytopathol 2001; 24: 181−185. doi: 10.1002/1097-0339(200103)24:3<181::AID-DC1037>3.0.CO;2-D
    Takashio S, Yamamuro M, Izumiya Y, et al. Diagnostic utility of cardiac troponin T level in patients with cardiac amyloidosis. ESC Heart Fail 2018; 5: 27−35.
    Gillmore JD, Damy T, Fontana M, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 2018; 39: 2799−2806. doi: 10.1093/eurheartj/ehx589
    Dispenzieri A, Gertz MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004; 22: 3751−3757. doi: 10.1200/JCO.2004.03.029
    Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 2012; 30: 989−995. doi: 10.1200/JCO.2011.38.5724
    Gilstrap LG, Dominici F, Wang Y, et al. Epidemiology of cardiac amyloidosis-associated heart failure hospitalizations among fee-for-service medicare beneficiaries in the United States. Circ Heart Fail 2019; 12: e005407. doi: 10.1161/CIRCHEARTFAILURE.118.005407
    Sperry BW, Saeed IM, Raza S, et al. Increasing rate of hospital admissions in patients with amyloidosis (from the National Inpatient Sample). Am J Cardiol 2019; 124: 1765−1769. doi: 10.1016/j.amjcard.2019.08.045
    Chan N, Hanna M, Maurer MS. The Wiggers Diagram: hemodynamic changes in cardiac amyloidosis. J Card Fail 2023; 29: 217−219. doi: 10.1016/j.cardfail.2022.06.008
    Gertz MA, Falk RH, Skinner M, et al. Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am J Cardiol 1985; 55: 1645. doi: 10.1016/0002-9149(85)90995-6
    Gertz MA, Skinner M, Connors LH, et al. Selective binding of nifedipine to amyloid fibrils. Am J Cardiol 1985; 55: 1646. doi: 10.1016/0002-9149(85)90996-8
    Rubinow A, Skinner M, Cohen AS. Digoxin sensitivity in amyloid cardiomyopathy. Circulation 1981; 63: 1285−1288. doi: 10.1161/01.CIR.63.6.1285
    Muchtar E, Gertz MA, Kumar SK, et al. Digoxin use in systemic light-chain (AL) amyloidosis: contra-indicated or cautious use? Amyloid 2018; 25: 86−92. doi: 10.1080/13506129.2018.1449744
    Bukhari S, Khan SZ, Bashir Z. Atrial fibrillation, thromboembolic risk, and anticoagulation in cardiac amyloidosis: a review. J Card Fail 2023; 29: 76−86. doi: 10.1016/j.cardfail.2022.08.008
    Bukhari S, Barakat AF, Eisele YS, et al. Prevalence of atrial fibrillation and thromboembolic risk in wild-type transthyretin amyloid cardiomyopathy. Circulation 2021; 143: 1335−1337. doi: 10.1161/CIRCULATIONAHA.120.052136
    El-Am EA, Dispenzieri A, Melduni RM, et al. Direct current cardioversion of atrial arrhythmias in adults with cardiac amyloidosis. J Am Coll Cardiol 2019; 73: 589−597.
    Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145: e876−e894.
    Chung FP, Lin YJ, Kuo L, et al. Catheter ablation of ventricular tachycardia/fibrillation in a patient with right ventricular amyloidosis with initial manifestations mimicking arrhythmogenic right ventricular dysplasia/cardiomyopathy. Korean Circ J 2017; 47: 282−285. doi: 10.4070/kcj.2016.0328
    Lin G, Dispenzieri A, Kyle R, et al. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol 2013; 24: 793−798. doi: 10.1111/jce.12123
    Higgins AY, Annapureddy AR, Wang Y, et al. Survival following implantable cardioverter-defibrillator implantation in patients with amyloid cardiomyopathy. J Am Heart Assoc 2020; 9: e016038. doi: 10.1161/JAHA.120.016038
    Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2018; 15: e73−e189. doi: 10.1016/j.hrthm.2017.10.036
    Donnellan E, Wazni OM, Saliba WI, et al. Prevalence, incidence, and impact on mortality of conduction system disease in transthyretin cardiac amyloidosis. Am J Cardiol 2020; 128: 140−146. doi: 10.1016/j.amjcard.2020.05.021
    Rehorn MR, Loungani RS, Black-Maier E, et al. Cardiac implantable electronic devices: a window into the evolution of conduction disease in cardiac amyloidosis. JACC Clin Electrophysiol 2020; 6: 1144−1154. doi: 10.1016/j.jacep.2020.04.020
    Donnellan E, Wazni OM, Saliba WI, et al. Cardiac devices in patients with transthyretin amyloidosis: Impact on functional class, left ventricular function, mitral regurgitation, and mortality. J Cardiovasc Electrophysiol 2019; 30: 2427−2432. doi: 10.1111/jce.14180
    Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494−498. doi: 10.1038/35078107
    Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379: 11−21. doi: 10.1056/NEJMoa1716153
    Crooke ST, Wang S, Vickers TA, et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35: 230−237. doi: 10.1038/nbt.3779
    Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379: 22−31. doi: 10.1056/NEJMoa1716793
    Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018; 379: 1007−1016. doi: 10.1056/NEJMoa1805689
    Berk JL, Suhr OB, Obici L, et al. Diflunisal Trial Consortium. Repurposing diflunisal for familial amyloid polyneuropathy:a randomized clinical trial. JAMA 2013; 310: 2658−2667.
    Sekijima Y, Tojo K, Morita H, et al. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid 2015; 22: 79−83. doi: 10.3109/13506129.2014.997872
    Penchala SC, Connelly S, Wang Y, et al. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc Natl Acad Sci U S A 2013; 110: 9992−9997. doi: 10.1073/pnas.1300761110
    Judge DP, Heitner SB, Falk RH, et al. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 2019; 74: 285−295. doi: 10.1016/j.jacc.2019.03.012
    Karlstedt E, Jimenez-Zepeda V, Howlett JG, et al. Clinical experience with the use of doxycycline and ursodeoxycholic acid for the treatment of transthyretin cardiac amyloidosis. J Card Fail 2019; 25: 147−153. doi: 10.1016/j.cardfail.2019.01.006
    Wixner J, Pilebro B, Lundgren HE, et al. Effect of doxycycline and ursodeoxycholic acid on transthyretin amyloidosis. Amyloid 2017; 24: 78−79.
    Hasib Sidiqi M, Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021. Blood Cancer J 2021; 11: 90. doi: 10.1038/s41408-021-00483-7
    Dispenzieri A, Buadi F, Kumar SK, et al. Treatment of immunoglobulin light chain amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement. Mayo Clin Proc 2015; 90: 1054−1081. doi: 10.1016/j.mayocp.2015.06.009
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (335) PDF downloads(119) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint