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Abstract 

The average human life span has markedly increased in modern society largely attributed to advances in medical and therapeutic 
sciences that have successfully reduced important health risks. However, advanced age results in numerous alterations to cellular and 
subcellular components that can impact the overall health and function of an individual. Not surprisingly, advanced age is a major risk factor 
for the development of heart disease in which elderly populations observe increased morbidity and mortality. Even healthy individuals that 
appear to have normal heart function under resting conditions, actually have an increased susceptibility and vulnerability to stress. This is 
confounded by the impact that stress and disease can have over time to both the heart and vessels. Although, there is a rapidly growing body of 
literature investigating the effects of aging on the heart and how age-related alterations affect cardiac function, the biology of aging and underlying 
mechanisms remain unclear. In this review, we summarize effects of aging on the heart and discuss potential theories of cellular aging with 
special emphasis on mitochondrial dysfunction. 
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1  Aging and the heart   

As the world’s elderly population grows rapidly, there is 
an increased interest in age-related diseases, notably heart 
disease. By 2020, it is predicted that those older than 65 
years will account for more than 20% of the total population, 
corresponding to the fastest growing age group worldwide. 
Cardiovascular diseases (CVD) are the leading causes of 
death in the elderly with approximately two thirds occurring 
after the age of 65. This is reflected by death rates of 
approximately 1000 times higher in individuals who are 
85–89 year old compared to those of 25–29 years of age 
(Table 1 and Figure 1).[1] As such, a continued pursuit of 
novel therapeutic interventions to treat heart disease remains 
an important area of research.  

Evidence from animal models and humans indicate a 
decreased ability of the aged heart to tolerate stress 
compared to young counterparts.[2–6] Differences in how an 
aged heart responds to a specific disease, type of injury or 
individual drug therapy compared to young heart imposes 
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an added complication. For example, an aged heart is more 
susceptible to adverse events and often unable to adequately 
overcome an adverse event. Indeed, aging causes significant 
reduction in the heart’s ability to endure damage from 
ischemia and reperfusion injury.[4,7] While aging is 
associated with increased oxidative stress, further increase 
in stress caused by injury makes the aged heart more  

Table 1.  Age specific mortality rate per 100,000 population.  

Age group (Years) Major cardiovascular diseases Diseases of heart
1–4 0.6 0.4 
5–9 0.3 0.2 
10–14 1.0 0.8 
15–19 1.3 1.0 
20–24 1.7 1.3 
25–29 3.0 2.3 
30–34 4.6 3.7 
35–39 10.7 8.4 
40–44 21.0 16.7 
45–49 40.2 31.9 
50–54 68.0 54.9 
55–59 114.5 92.5 
60–64 191.9 154.8 
65–69 318.1 247.5 
70–74 554.3 410.9 
75–79 1027.1 740.9 
80–84 1912.7 1344.2 
85–89 3697.8 2591.5 
> 90 7896.0 5555.3 
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Figure 1.  Age specific mortality rate. 
 
vulnerable.[2,3,5,6,8,9] Elderly patients often present at a clinic 
in an atypical manner, indicative of other diseases and 
complicating factors, which not only impedes diagnosis and 
treatment but increases susceptibility of the aged heart to 
more injury.[10] Therefore, it is important to understand the 
biology of aging on the heart in order to determine 
underlying mechanisms that produce adverse effects. 

1.1  How does age affect heart function? 

1.1.1  Diastolic function 

In Western societies, individuals over the age of 65 have 
the highest mortality rate due to heart failure.[11,12] Clinical 
trials report that one third of these patients have an ejection 
fraction of more than 50%, suggesting that systolic function 
is maintained but diastolic function is reduced.[13] Diastolic 
heart failure is characterized by normal left ventricular 
diastolic volume, normal ejection fraction, but a delayed 
active relaxation and increased passive stiffness of the left 
ventricle.[14,15] Abnormality of mechanical function during 
diastole precedes diastolic heart failure; however, this can 
occur with normal or abnormal systolic function and present 
with or without clinical signs of heart failure.[15,16] Animal 
studies have demonstrated a significant reduction in 
contraction and relaxation velocity in aged hearts compared 
to younger hearts.[17–20] In healthy individuals, there is a 
correlation between diastolic dysfunction and increasing age, 
for example, echocardiographic parameters demonstrate 
decreased E/A ratio, prolonged isovolumic relaxation and 
early wave deceleration time occurs with age.[21] There are 
numerous mechanisms proposed to cause reduced velocity 
and delayed relaxation such as increased myocardial wall 

stiffness, decreased numbers of cardiomyocytes, accumulating 
levels extracellular matrix and improper Ca+2 handling 
during action potential.[22,23] The majority stem from 
molecular changes in cardiomyocyte structure and function 
that occur during aging.  

1.1.2  Systolic function 

In contrast to strong evidence for impaired diastolic 
function in aged hearts, the effect on systolic function 
remains mixed. Some studies have reported decreased 
cardiac output or decreased cardiac index while others 
demonstrate no significant change in either with age.[7,24–27] 
The majority of studies indicate that ejection fraction, and 
therefore stroke volume, remains unchanged under resting 
conditions in an aged heart.[24,28] Further evidence 
demonstrates that while cardiac index remains unaltered in 
aged hearts under resting conditions, the ability to increase 
cardiac function in response to exercise induced stress 
decreases with aging.[28] Thus, suggesting systolic function 
is maintained at resting condition but unable to adequately 
respond to increased stress conditions. However, some 
recent studies report impaired systolic function does occur 
with aging.[20,26,29] Both invasive (pressure catheter) and 
noninvasive (doppler echocardiography) techniques have 
been utilized in animal models to measure systolic 
dysfunction in aged mice.[30] For example, the effects of 
aging on systolic function in mice demonstrated a constant 
decrease in left ventricular ejection fraction (LVEF) 
occurred with age.[31] The decrease in LVEF was consistent 
with increased interstitial fibrosis, hypertrophy and 
activation of proapoptotic signaling.[31] Ming et al.[20] 
reported significant impairment of systolic function with 
age in healthy rats. In 54-week old rats, 22% decrease in 
dp/dtmax and 15% decrease in ejection fraction was observed 
compared to 9-week old rats, which clearly demonstrate age 
associated impairment of systolic function.[20]  

1.1.3  Heart rate 

Resting heart rates remain relatively unaffected with age; 
however, numerous studies have demonstrated that 
advancing age is associated with decreased heart rate 
variability (HRV).[24,32,33] HRV is defined as fluctuations in 
beat-to-beat interval times and is predominantly dependent 
on extrinsic regulators. HRV reflects the heart’s ability to 
respond and adapt to changing extracardiac factors such as 
stress.[34] Higher HRV indicates a quicker ability to change 
the heart rate in response to stress conditions, thus, a lower 
HRV in aged hearts results in a reduced ability to respond to 
appropriately.[32,33] Reports suggest a decreased responsiveness 
to β-adrenergic receptor in aged hearts might be responsible 
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for decreased HRV in aged people during exercise or 
stress.[35] 

1.2  What leads to impaired function in aged hearts? 

1.2.1  Changes in ventricle structure 

Alterations to heart structure attributed to age-dependent 
effects is thought to significantly impact overall heart 
function.[36–38] Evidence suggests that there is an increase in 
left ventricular mass with aging, in which heart weight can 
increase 1 g to 1.5 g per year.[39,40] Although, studies that 
exclude individuals with heart diseases fail to report 
significant changes in left ventricular mass.[36,37] Conversely, 
an increase in relative wall thickness has been reported in 
aged hearts from healthy individuals.[41] The increased wall 
thickness is accompanied by decreased cardiomyocyte 
count and increased left ventricular collagen content, which 
are features of fibrosis.[42] Animal studies have demonstrated 
left ventricular collagen content increases linearly with age 
but can increase two-fold during the later years of life.[42] 
Overall, the cumulative impact of decreased cardiomyocyte 
count, increased collagen deposition and increased stiffness 
leads to significant ventricular dysfunction which is a major 
characteristic of the aging heart.[37,43] 

1.2.2  Changes at the cellular level 

Age-dependent changes to left ventricular structure and 
function are associated with increased fibrosis leading to 
ventricular stiffening and diastolic dysfunction. With increased 
collagen content and increased stiffness, cardiomyocyte 
hypertrophy contributes significantly towards diastolic 
dysfunction in aged heart. At the cellular level, heart 
structure is comprised of numerous cell types that make up 
three main components: cardiac muscle tissue, the 
conduction system and the extracellular connective tissue, 
which consists mainly of collagen. Cardiac muscle cells, or 
cardiomyocytes, are the contractile cells, which form a 
major part of the ventricular and atrial walls. Previously, it 
was thought that cardiomyocytes were terminally 
differentiated and their lifespan was the same as the heart. 
However, identification of resident cardiac stem cells and 
data demonstrating that cardiomyocytes can regenerate 
suggest myocyte turnover exists.[44,45] Still the extent of 
cardiomyocyte renewal remains controversial as reports 
range from 0%−20% renewal every year.[44] The fact 
cardiomyocytes are formed postnatally and significantly 
decrease in number with age, suggests the rate of 
cardiomyocyte regeneration decreases and/or any regeneration 
cannot compensate for cell loss over time.[37,44] The loss of 
cardiomyocytes in aged hearts is then compensated by 
increase in cell size or by cellular hypertrophy.[37] 

Importantly, aging also affects the structure and function of 
cardiac interstitial cells, such as endothelial and fibroblasts 
that play an important role in the pathogensis of CVD. 

Extensive evidence demonstrates aging directly influences 
the expression and function of various ion channels, 
receptors, enzymes and signaling molecules that significantly 
impact heart function.[35,46–48] For example, advanced age is 
associated with alterations in expression of sarcoplasmic 
reticulum calcium ATPase (SERCA) and phospholambam, 
resulting in improper regulation of intracellular Ca2+ leading 
to prolonged activation of contractile proteins in cardiac 
muscles.[46] This effect can be evident in the form of 
prolonged isovolumetric relaxation in aged human hearts.[46] 

Moreover, increased intracellular Ca2+ for a prolonged 
period causes increased Ca2+ uptake by mitochondria, which 
further leads to mitochondrial dysfunction and cardiomyocyte 
death. Similarly, expression and/or function of ATP sensitive 
K+ (KATP) channels decreases with advanced age affecting 
the electrical activities of cardiomyocytes.[47–49] Decreased 
KATP channel density represents a possible mechanism for 
decreased tolerance of aged heart against ischemic 
injury.[47,48] Overall, numerous age-related effects to cellular 
and subcellular structure and function of key channels, 
proteins and molecules play an essential role in the 
pathogenesis of CVD in aged individuals.  

2 Aging and mitochondria 

In the heart, mitochondria provide the primary source of 
energy that fuels the contractile apparatus and act as key 
regulators of cell survival and death. These dynamic 
organelles undergo continuous fusion and fission processes 
(dynamics), which are closely related to cellular energy 
demands and stress levels.[50] Impaired mitochondrial 
function over time has been suggested as an underlying 
cause of cardiomyocyte loss during aging.[51] Reports 
suggest that bio-energetically efficient mitochondria from 
young individuals become less numerous, swollen, and 
chronically depolarized.[51] Importantly, mitochondrial 
integrity is vital for cellular homeostasis and cardiac 
performance.  

2.1  Mitochondrial theory of cellular aging 

The connection between mitochondria and aging started 
in 1972 when Harman et al.[52] proposed the role of 
mitochondria as the main source of reactive oxygen species 
(ROS) and free radicals, which are mediators in cellular 
age-dependant damage. In 1980, Miquel and his colleagues 
refined this role emphasizing that mitochondria are the main 
source of ROS and the main target of their injury, 
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suggesting they were the key “organelles” initiating cellular 
processes leading to aging.[53] 

Mitochondrial theory of cellular aging relies on the fact 
that mitochondrial DNA (mtDNA) has a high rate of 
mutation and limited capacity for repair.[54] Over time, 
accumulation of mtDNA mutations compromises the integrity 
of the mitochondrial genome which is essential for 
mitochondrial function.[54] Thus, mitochondria gradually 
lose their ability to produce energy while continue to emit 
higher amount of ROS.[55] As the tissue ages, populations of 
dysfunctional mitochondria in the cell increases, especially 
in terminally differentiated non-proliferative organs such as 
brain and heart, causing energy shortage and a growing 
oxidative burden. This leads to cellular damage or death 
then tissue degeneration and dysfunction, which are seen in 
age-related diseases that eventually kill the individual. In 
short, this theory considers mtDNA and its mutation rates as 
the “aging clock” that initiates aging events influencing the 
overall organism longevity.  

Rates of mtDNA mutation have been reported to be 
15-fold higher than that of nuclear DNA (nDNA), which 
lead to aberrant expression of electron transport chain (ETC) 
proteins impairing the oxidative phosphorylation process 
(OxPhos).[56,57] These age-dependent changes in mitochondria 
result in larger and less numerous organelles with lower 
mitochondrial membrane potential and ultra structural 
abnormalities.[58] Importantly, ETC dysfunction has been 
demonstrated to decrease ATP production and increase 
ROS emission as well impair nucleotide synthesis, that, in 
turn, affects nDNA genes.[59] Our current level of 
knowledge suggests that the decline of mitochondrial 
integrity and function is implicated in age related and life 
limiting diseases such as heart failure, diabetes, cancer and 
neurodegeneration.[60,61] 

2.1.1  Aging and mtDNA 

Bacteria-like features of mitochondria support the 
hypothesis of their evolutionary origin from bacteria and 
notion of conserved aging pathways between species.[62–65] 
Mitochondria are unique organelles that contain their own 
DNA, transcriptional and translational synthesis machinery. 
However, mitochondria cannot be synthesized de novo, 
instead they replicate in the cytosolic compartment through 
a process of division.[66] Human mtDNA contain 37 genes 
encoding 13 polypeptides that compose subunits within the 
OxPhos complexes. The remaining mitochondrial proteins 
are encoded in nDNA genes, including 80 OxPhos genes, 
mtDNA polymerase γ, mtDNA transcription factors and 
metabolic pathways related genes.[67–70] Importantly the 

proteins that are encoded by mtDNA are vital for normal 
mitochondrial function.[59]  

mtDNA does not have the protein protection that 
histones provide to nDNA and has less effective repair 
mechanisms.[59,71] Mutations in mtDNA affecting the 
expression and integrity of OxPhos complexes can cause 
mitochondrial dysfunction and increased ROS production.[69] 
Conversely, located in the mitochondrial matrix, mtDNA is 
exposed to these destructive ROS byproducts making it 
highly prone to oxidative damage.[59] The amount of 
8-hydroxydeoxyguanosine, marker of DNA oxidative 
damage, found in mtDNA was found to be 16 times higher 
than the corresponding ratio in nDNA in rat liver cells.[71] 
Resultant mutations can be transferred during mitochondrial 
division to daughter mitochondria producing sub-populations 
of mutant mitochondria within a cell.[72] Cellular mtDNA 
mutations tend to persist and accumulate resulting in 
impaired mitochondrial metabolism, ROS production and 
defective cellular functions.[73,74] Together, this results in a 
wide range of pathological abnormalities, which depends 
upon the severity of mtDNA alterations, amount of 
dysfunctional mitochondria and the specific tissue 
impacted.[75,76] Indeed, progressive accumulation of mtDNA 
mutations has been associated with age-related deterioration 
of function in tissues and organs such as heart, nervous 
system and kidney.[69]  

It is uncertain whether mtDNA deterioration is an 
independent “cause” in the aging process or mtDNA 
mutations is merely an “effect” of the increased oxidative 
damage and overall functional decline in the aging cell. 
Development of a mouse model with defective mtDNA 
polymerase γ (POLG) has provided evidence for a role of 
mutated mtDNA in aging.[77] The designed POLG was 
defectively proofreading mtDNA during replication leading 
to higher introduction rate of random mutations. As a result, 
the level of mtDNA point mutations increased three to five 
folds along with broken linear mtDNA and deletions. These 
“mtDNA mutator mice” were healthy and normal up to their 
early adolescence, but then exhibited a clear premature 
onset of aging phenotypes such as osteoporosis, weight loss, 
heart enlargement, anemia, curvature of the spine, hair loss, 
and reduced fertility, associated with significant reduction 
of life span.  

2.1.2  Aging and mitochondrial ROS 

Evidence suggests that ROS and free radicals act as 
major mediators responsible for the cellular damage seen in 
aged cells.[78] High concentrations of ROS cause irreversible 
oxidative damage to proteins, nucleic acids and membrane 
lipids, causing general decline of cell function.[59,61] Cellular 
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antioxidant enzymes and ROS scavengers provide 
protection by maintaining their levels within beneficial 
ranges.[61,65] Accordingly, oxidative stress can result from 
either elevated ROS generation or reduced antioxidant 
capacity. Data from genetically altered mice with disrupted 
p66shc gene, an adaptor protein responsible for mitochondrial 
ROS generation independent from OxPhos process, showed 
an increased resistance to oxidative stress associated with 
30% extension in lifespan.[79] Further evidence for a marked 
lifespan extension is observed in transgenic mice 
overexpressing either the mitochondrial antioxidant enzyme 
manganese superoxide dismutase (MnSOD) or catalase.[80,81] 
Moreover, mice deficient in MnSOD demonstrate early 
perinatal death associated with severe mitochondrial 
damage, dilated cardiomyopathy and neurodegeneration.[82,83] 
While these studies demonstrate a link between ROS levels 
and longevity, they also indicate the importance of 
mitochondria as a primary target for oxidative damage. 
Consequently, modification of lifespan in transgenic models 
with modulated oxidative stress levels can be explained by 
regulation of mtDNA mutation rate.  

An important issue is the relationship between ROS 
levels and mtDNA mutations. It has been proposed that the 
progressive mutations in mtDNA and the resultant decline 
in mitochondrial activity observed in aged tissues,[84,85] is 
responsible for the increased generation of ROS, which, in 
turn, will attack mitochondria causing further mtDNA 
damage. This “vicious cycle” concept[86,87] postulated that 
accumulation of mtDNA mutations is exponential and 
associated with massive increase in ROS production.[61] 
However, the vicious cycle hypothesis has been challenged 
by evidence from the mtDNA mutator mice. These mice 
exhibit a linear accumulation of mtDNA mutations over 
their lifespan. However, although they have severe respiratory 
chain dysfunction, there is no significant increase in ROS 
levels and normal expression of antioxidant enzymes, such 
as MnSOD and glutathione peroxidase 1, compared to wild 
type controls.[88] These results strongly argue that mtDNA 
mutation and the respiratory chain dysfunction are the 
primary inducer of premature aging in these mice 
independent from the downstream role of ROS.[88]  

2.2  Mitochondrial quality control 

Mitochondria are strategic organelles essential for cell 
function and homeostasis, which provide energy and act as 
key regulators of cell death. Indeed, mitochondrial 
dysfunction is repeatedly reported in aged tissues.[57,85,89,90] 
Impairment in mitochondrial integrity, dynamics or 
metabolic activity results in a range of deleterious effects to 
the cell such as reduced ATP production, elevated cytosolic 

calcium, increased ROS release and release of proapoptotic 
factors triggering cell death.[59,91–94] Dysfunctional mitochondria 
can trigger removal of damaged cells via apoptosis; however, 
opposite to proliferating tissues, this can be severely 
detrimental in postmitotic non-proliferative tissues, such as 
brain and heart. For example, in cardiomyocytes, which are 
long-living cells with no dividing ability and highly 
dependent upon mitochondria for energy production, 
mitochondria form approximately 30% of the total cell 
volume and approximately 90% of the required energy.[95] 
Therefore, an efficient quality control system is essential to 
remove dysfunctional mitochondria and maintain their 
overall integrity. Impairment to this system will severely 
impact cardiac homeostasis. 

Mitochondrial quality control is composed of two 
processes: one, removal of defective mitochondria by 
autophagy, and, two, biogenesis of new mitochondria. In 
autophagy, the cell deliberately digests and recycles 
damaged components such as proteins and organelles to 
increase survivability.[96,97] Experimental evidence demonstrates 
that loss-of-function mutations in genes encoding autophagic 
proteins, such as Atg5, resulting in suppression of basal 
autophagy leading to a significant shortening of lifespan.[98–100] 
Aging is associated with a decline in autophagy, which may 
explain the accumulation of aberrant organelles and 
macromolecules in senescent cells.[61,97,101,102] For example, 
mitochondria with inhibited respiratory chain and 
depolarized membrane are unable to fuse with other 
healthy mitochondria then they are targeted for removal by 
autophagy.[103] Twig et al.[104] observed that a single 
mitochondrion can undergo mitochondrial fission into two 
daughter mitochondria; a functionally active polarized 
mitochondrion and a non-functional depolarized mitochondrion. 
The non-functional mitochondrion is subsequently removed 
by autophagy suggesting a segregation process among 
individual mitochondrion, which retains healthy mitochondria 
with more efficient energy production and better resistance 
to cellular stress. Caloric restriction is shown to increase 
both median and mean lifespan in several models from yeast 
to mammals.[105] Interestingly, caloric restriction has been 
demonstrated to induce autophagic pathways[106] and 
mitochondrial biogenesis by activating the transcriptional 
modulator peroxisome proliferator-activated receptor 
coaltivator-1α (PGC-1α).[61,67] Both are key components of 
mitochondrial quality control that lead to removal of 
dysfunctional mitochondria and enhanced longevity.[106] 

3 Conclusion 

Aging is a natural process that occurs in all organisms; 
however, the underlying mechanisms and biology of this 
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complex phenotype remains incompletely understood. CVD 
is a major cause of disability and mortality in elderly 
individuals in which the rates of incidence rapidly rise after 
the age of 65. Aging results in an intricate series of alterations 
to heart structure and function adapting to meet the needs of 
an older body. Even healthy individuals that appear to have 
normal heart function under resting conditions, actually have 
an increased susceptibility and vulnerability to stress. This is 
confounded by the impact that stress and disease can have 
over time to both the heart and vessels. There is a rapidly 
growing body of literature investigating the effects of aging 
on the heart and how age-related alterations to gene 
expression, protein modification and tissue structure effect 
cardiac function. Recent advances into understanding the role 
of mitochondria in maintaining cardiac energetics and survival 
are providing new ideas for developing novel therapies to 
limit and prevent susceptibility to injury in the aged heart. 
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