ISSN 1671-5411 CN 11-5329/R
Volume 17 Issue 9
Oct.  2020
Turn off MathJax
Article Contents
Yi-Dan HAO, Peng HAO, Zheng WANG, Ying-Xin ZHAO, Zhi-Ming ZHOU, Yu-Yang LIU, De-An JIA, Hong-Ya HAN, Bin HU, Hua SHEN, Fei GAO, Guo-Zhong PAN, Zhen-Feng GUO, Shi-Wei YANG, Yu-Jie ZHOU. Effects and mechanisms of glucose-insulin-potassium on post-procedural myocardial injury after percutaneous coronary intervention. J Geriatr Cardiol 2020; 17(9): 554-560. doi: 10.11909/j.issn.1671-5411.2020.09.004
Citation: Yi-Dan HAO, Peng HAO, Zheng WANG, Ying-Xin ZHAO, Zhi-Ming ZHOU, Yu-Yang LIU, De-An JIA, Hong-Ya HAN, Bin HU, Hua SHEN, Fei GAO, Guo-Zhong PAN, Zhen-Feng GUO, Shi-Wei YANG, Yu-Jie ZHOU. Effects and mechanisms of glucose-insulin-potassium on post-procedural myocardial injury after percutaneous coronary intervention. J Geriatr Cardiol 2020; 17(9): 554-560. doi: 10.11909/j.issn.1671-5411.2020.09.004

Effects and mechanisms of glucose-insulin-potassium on post-procedural myocardial injury after percutaneous coronary intervention

doi: 10.11909/j.issn.1671-5411.2020.09.004
More Information
  • Corresponding author: Shi-Wei YANG, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chao Yang District, Beijing 100029, China. E-mails: jackydang@163.com; Yu-Jie ZHOU, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chao Yang District, Beijing 100029, China. E-mails: azzyj_12@163.com
  • Received Date: 2020-06-22
  • Accepted Date: 2020-09-26
  • Rev Recd Date: 2020-09-25
  • Available Online: 2020-09-28
  • Publish Date: 2020-10-17
  •  Objective To evaluate the effects and mechanisms of glucose-insulin-potassium (GIK) on post-procedural myocardial injury (PMI) after percutaneous coronary intervention (PCI). Methods A total of 200 non-diabetic patients with documented coronary heart disease (CHD) were divided into the Group GIK and Group G, with 100 patients in each group. Patients in Group G were given intravenous infusion of glucose solution 2 hours before PCI. As compared, patients in Group GIK were given GIK. Results Both post-procedural creatine phosphokinase isoenzyme MB (CK-MB; 62.1 ± 47.8 vs. 48.8 ± 52.6 U/L, P = 0.007) and cTnI (0.68 ± 0.83 vs. 0.19 ± 0.24 ng/mL, P < 0.001) in Group GIK were significantly higher than those in Group G. In Group G, 9.0% and 4.0% of patients had post-procedural increases in CK-MB 1-3 times and > 3 times, which were significantly lower than those in Group GIK (14.0% and 7.0%, respectively; all P values < 0.01); 13.0% and 7.0% of patients had post-procedural increases in cTnI 1-3 times and > 3 times, which were also significantly lower than those in Group GIK (21.0% and 13.0%, respectively; all P < 0.001). Pre-procedural (10.2 ± 4.5 vs. 5.1 ± 6.3, P < 0.001) and post-procedural rapid blood glucose (RBG) levels (8.9 ± 3.9 vs. 5.3 ± 5.6, P < 0.001) in Group G were higher than those in Group GIK. In adjusted logistic models, usage of GIK (compared with glucose solution) remained significantly and independently associated with higher risk of post-procedural increases in both CK-MB and cTnI levels > 3 times. Furthermore, pre-procedural RBG levels < 5.0mmol/L were significantly associated with higher risk of post-procedural increases in both CK-MB and cTnI levels. Conclusions In non-diabetic patients with CHD, the administration of GIK may increase the risk of PMI due to hypoglycemia induced by GIK.
  • *The authors contributed equally to this paper, and are listed alphabetically
  • loading
  • [1]
    Abu SH, Wohlleben D, Vafaie M, et al. Coronary angiography- related myocardial injury as detected by high-sensitivity cardiac troponin T assay. EuroIntervention 2016; 12: 337–344. doi: 10.4244/EIJV12I3A54
    [2]
    Malik SA, Brilakis ES, Pompili V, Chatzizisis YS. Lost and found: coronary stent retrieval and review of literature. Catheter Cardiovasc Interv 2018; 92: 50–53. doi: 10.1002/ccd.27464
    [3]
    Zeitouni M, Silvain J, Guedeney P, et al. Periprocedural myocardial infarction and injury in elective coronary stenting. Eur Heart J 2018; 39: 1100–1109. doi: 10.1093/eurheartj/ehx799
    [4]
    Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/ AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2014; 130: 1749–1767. doi: 10.1161/CIR.0000000000000095
    [5]
    Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/ AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/ AHA Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol 2016; 67: 1235–1250. doi: 10.1161/CIR.0000000000000336
    [6]
    Lüscher TF. Optimizing percutaneous coronary interventions: Heart Team, SYNTAX Ⅱ Score, physiology and imaging guidance, modern stents, and guideline-based medication. Eur Heart J 2017; 38: 3109–3113. doi: 10.1093/eurheartj/ehx631
    [7]
    Sodi-Pallares D, Ma DE, Medrano G, et al.[Effect of glucose-insulin-potassium solutions on the electrocardiogram in acute and chronic cornary insufficiency]. Mal Cardiovasc 1962; 3: 41–79. [Article in French]. http://www.ncbi.nlm.nih.gov/pubmed/13989829
    [8]
    Opie LH. Proof that glucose-insulin-potassium provides metabolic protection of ischaemic myocardium. Lancet 1999; 353: 768–769. doi: 10.1016/S0140-6736(98)00385-7
    [9]
    Apstein CS, Opie LH. Glucose-insulin-potassium (GIK) for acute myocardial infarction: a negative study with a positive value. Cardiovasc Drugs Ther 1999; 13: 185–189. doi: 10.1023/A:1007757407246
    [10]
    Opie LH. Glucose and the metabolism of ischaemic myocardium. Lancet 1995; 345: 1520–1521. doi: 10.1016/S0140-6736(95)91080-8
    [11]
    Oldfield GS, Commerford PJ, Opie LH. Effects of preoperative glucose-insulin-potassium on myocardial glycogen levels and on complications of mitral valve replacement. J Thorac Cardiovasc Surg 1986; 91: 874–878. doi: 10.1016/S0022-5223(19)35966-5
    [12]
    Dalby AJ, Bricknell OL, Opie LH. Effect of glucose-insulin- potassium infusions on epicardial ECG changes and on myocardial metabolic changes after coronary artery ligation in dogs. Cardiovasc Res 1981; 15: 588–598. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001920512
    [13]
    Opie LH, Owen P. Effect of glucose-insulin-potassium infusions on arteriovenous differences of glucose of free fatty acids and on tissue metabolic changes in dogs with developing myocardial infarction. Am J Cardiol 1976; 38: 310–321. doi: 10.1016/0002-9149(76)90173-9
    [14]
    Avogaro A, Bonora E, Consoli A, et al. Glucose-lowering therapy and cardiovascular outcomes in patients with type 2 diabetes mellitus and acute coronary syndrome. Diab Vasc Dis Res 2019; 16: 399–414. doi: 10.1177/1479164119845612
    [15]
    JAW P, van Steen SCJ, Thiel B, et al. Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. Anaesthesia 2018; 73: 332–339. doi: 10.1111/anae.14180
    [16]
    EMA S, Shulman R, Singer M. Experience using high-dose glucose-insulin-potassium (GIK) in critically ill patients. J Crit Care 2017; 41: 72–77. doi: 10.1016/j.jcrc.2017.04.039
    [17]
    Polderman JA, Houweling PL, Hollmann MW, et al. Study protocol of a randomised controlled trial comparing perioperative intravenous insulin, GIK or GLP-1 treatment in diabetes-PILGRIM trial. BMC Anesthesiol 2014; 14: 91. doi: 10.1186/1471-2253-14-91
    [18]
    Shirakawa Y.[High-dose insulin therapy]. Chudoku Kenkyu 2012; 25: 201–204.[Article in Japanese].
    [19]
    Hirsch IB, O'Brien KD. How to best manage glycemia and non-glycemia during the time of acute myocardial infarction. Diabetes Technol Ther 2012; 14 (Suppl 1): S22–S32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c70d60d432f1f7fc10856b8aa8c7dd0
    [20]
    Lipton JA, Can A, Akoudad S, Simoons ML. The role of insulin therapy and glucose normalisation in patients with acute coronary syndrome. Neth Heart J 2011; 19: 79–84. doi: 10.1007/s12471-010-0065-1
    [21]
    Goyal A, Mehta SR, Díaz R, et al. Differential clinical outcomes associated with hypoglycemia and hyperglycemia in acute myocardial infarction. Circulation 2009; 120: 2429–2437. doi: 10.1161/CIRCULATIONAHA.108.837765
    [22]
    Pittas AG, Siegel RD, Lau J. Insulin therapy and in-hospital mortality in critically ill patients: systematic review and meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 2006; 30: 164–172. doi: 10.1177/0148607106030002164
    [23]
    van der Horst IC, Timmer JR, Ottervanger JP, et al. Glucose and potassium derangements by glucose-insulin-potassium infusion in acute myocardial infarction. Neth Heart J 2006; 14: 89–94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001401554
    [24]
    Visser L, Zuurbier CJ, Hoek FJ, et al. Glucose, insulin and potassium applied as perioperative hyperinsulinaemic normoglycaemic clamp: effects on inflammatory response during coronary artery surgery. Br J Anaesth 2005; 95: 448–457. doi: 10.1093/bja/aei220
    [25]
    Gu W, Pagel PS, Warltier DC, Kersten JR. Modifying cardiovascular risk in diabetes mellitus. Anesthesiology 2003; 98: 774–779. doi: 10.1097/00000542-200303000-00029
    [26]
    Bonnier M, Lönnroth P, Gudbjörnsdottir S, et al. Validation of a glucose-insulin-potassium infusion algorithm in hospitalized diabetic patients. J Intern Med 2003; 253: 189–193. doi: 10.1046/j.1365-2796.2003.01085.x
    [27]
    Wistbacka JO, Nuutinen LS, Lepojärvi MV, et al. Perioperative glucose-insulin-potassium infusion in elective coronary surgery: minor benefit in connection with blood cardioplegia. Infusionsther Transfusionsmed 1994; 21: 160–166. http://www.karger.com/Article/Abstract/222967
    [28]
    Girard C, Quentin P, Bouvier H, et al. Glucose and insulin supply before cardiopulmonary bypass in cardiac surgery: a double-blind study. Ann Thorac Surg 1992; 54: 259–263. doi: 10.1016/0003-4975(92)91380-R
    [29]
    Husband DJ, Thai AC, Alberti KG. Management of diabetes during surgery with glucose-insulin-potassium infusion. Diabet Med 1986; 3: 69–74. doi: 10.1111/j.1464-5491.1986.tb00711.x
    [30]
    Yang SW, Zhou YJ, Liu YY, et al. Influence of abnormal fasting plasma glucose on left ventricular function in older patients with acute myocardial infarction. Angiology 2012; 63: 266–274. doi: 10.1177/0003319711413893
    [31]
    Yang SW, Zhou YJ, Nie XM, et al. Effect of abnormal fasting plasma glucose level on all-cause mortality in older patients with acute myocardial infarction: results from the Beijing Elderly Acute Myocardial Infarction Study (BEAMIS). Mayo Clin Proc 2011; 86: 94–104. doi: 10.4065/mcp.2010.0473
    [32]
    Yang SW, Zhou YJ, Hu DY, et al. Association between admission hypoglycaemia and in-hospital and 3-year mortality in older patients with acute myocardial infarction. Heart 2010; 96: 1444–1450. doi: 10.1136/hrt.2009.189316
    [33]
    Yang SW, Park KH, Zhou YJ. The impact of hypoglycemia on the cardiovascular system: physiology and pathophysiology. Angiology 2016; 67: 802–809. doi: 10.1177/0003319715623400
    [34]
    Cuculi F, Lim CC, Banning AP. Periprocedural myocardial injury during elective percutaneous coronary intervention: is it important and how can it be prevented. Heart 2010; 96: 736–740. doi: 10.1136/hrt.2009.186189
    [35]
    Deng KW, Shi XB, Zhao YX, et al. The effect of exogenous creatine phosphate on myocardial injury after percutaneous coronary intervention. Angiology 2015; 66: 163–168. doi: 10.1177/0003319713515996
    [36]
    Bertinchant JP, Polge A, Juan JM, et al. Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clin Chim Acta 2003; 329: 39–51. doi: 10.1016/S0009-8981(03)00013-5
    [37]
    Bertinchant JP, Ledermann B, Schmutz L, et al.[Diagnostic and prognostic significance of CK-MB, troponins, CRP, BNP and/or NT-proBNP in coronary angioplasty. Elevation mechanisms and clinical implications]. Arch Mal Coeur Vaiss 2007. 100: 925–933.[Article in French]. http://europepmc.org/abstract/MED/18209693
    [38]
    Kong TQ, Davidson CJ, Meyers SN, et al. Prognostic implication of creatine kinase elevation following elective coronary artery interventions. JAMA 1997; 277: 461–466. doi: 10.1001/jama.1997.03540300029029
    [39]
    Fuchs S, Kornowski R, Mehran R, et al. Prognostic value of cardiac troponin-I levels following catheter-based coronary interventions. Am J Cardiol 2000; 85: 1077–1082. doi: 10.1016/S0002-9149(00)00699-8
    [40]
    Ishibashi Y, Muramatsu T, Nakatani S, et al. Incidence and potential mechanism(s) of post-procedural rise of cardiac biomarker in patients with coronary artery narrowing after implantation of an everolimus-eluting bioresorbable vascular Scaffold or Everolimus-eluting metallic stent. JACC Cardiovasc Interv 2015; 8: 1053–1063. doi: 10.1016/j.jcin.2015.06.001
    [41]
    Goliasch G, Winter MP, Ayoub M, et al. A contemporary definition of periprocedural myocardial injury after percutaneous coronary intervention of chronic total occlusions. JACC Cardiovasc Interv 2019; 12: 1915–1923. doi: 10.1016/j.jcin.2019.06.053
    [42]
    Monami M, Dicembrini I, Kundisova L, et al. A meta-analysis of the hypoglycaemic risk in randomized controlled trials with sulphonylureas in patients with type 2 diabetes. Diabetes Obes Metab 2014; 16: 833–840. doi: 10.1111/dom.12287
    [43]
    Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes Care 2005; 28: 1245–1249.
    [44]
    Tsujimoto T, Yamamoto-Honda R, Kajio H, et al. High risk of abnormal QT prolongation in the early morning in diabetic and non-diabetic patients with severe hypoglycemia. Ann Med 2015: 1–7. https://www.ncbi.nlm.nih.gov/pubmed/25861830
    [45]
    Lheureux O, Preiser JC. Year in review 2013: Critical Care-- metabolism. Crit Care 2014; 18: 571. doi: 10.1186/s13054-014-0571-4
    [46]
    Eckert-Norton M, Kirk S. Non-diabetic hypoglycemia. J Clin Endocrinol Metab 2013; 98: 39A–40A.
    [47]
    Nirantharakumar K, Marshall T, Hodson J, et al. Hypoglycemia in non-diabetic in-patients: clinical or criminal. PLoS One 2012; 7: e40384. doi: 10.1371/journal.pone.0040384
    [48]
    Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545–2559. doi: 10.1056/NEJMoa0802743
    [49]
    Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560–2572. doi: 10.1056/NEJMoa0802987
    [50]
    Moritz T, Duckworth W, Abraira C. Veterans Affairs diabetes trial--corrections. N Engl J Med 2009; 361: 1024–1025. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad21935b24e6b87b13551a2be450c54a
    [51]
    de Boer IH, Sun W, Cleary PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 2011; 365: 2366–2376. doi: 10.1056/NEJMoa1111732
    [52]
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837–853. doi: 10.1016/S0140-6736(98)07019-6
    [53]
    Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577–1589. doi: 10.1056/NEJMoa0806470
    [54]
    Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 2010; 340: b4909. doi: 10.1136/bmj.b4909
    [55]
    Riddle MC, Ambrosius WT, Brillon DJ, et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care 2010; 33: 983–990. doi: 10.2337/dc09-1278
    [56]
    Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129–139. doi: 10.1056/NEJMoa0808431
    [57]
    Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 2012; 367: 319–328. doi: 10.1056/NEJMoa1203858
    [58]
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329: 977–986. doi: 10.1056/NEJM199309303291401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (137) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return