ISSN 1671-5411 CN 11-5329/R
Volume 18 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Please cite this article as: Ponsiglione A, Ascione R, Nappi C, Imbriaco I, Klain M, Cuocolo R, Cuocolo A, Petretta M. Cardiac hybrid imaging: novel tracers for novel targets. J Geriatr Cardiol 2021; 18(9): 748−758. DOI: 10.11909/j.issn.1671-5411.2021.09.006
Citation: Please cite this article as: Ponsiglione A, Ascione R, Nappi C, Imbriaco I, Klain M, Cuocolo R, Cuocolo A, Petretta M. Cardiac hybrid imaging: novel tracers for novel targets. J Geriatr Cardiol 2021; 18(9): 748−758. DOI: 10.11909/j.issn.1671-5411.2021.09.006

Cardiac hybrid imaging: novel tracers for novel targets

doi: 10.11909/j.issn.1671-5411.2021.09.006
More Information
  • Non-invasive cardiac imaging has explored enormous advances in the last few decades. In particular, hybrid imaging represents the fusion of information from multiple imaging modalities, allowing to provide a more comprehensive dataset compared to traditional imaging techniques in patients with cardiovascular diseases. The complementary anatomical, functional and molecular information provided by hybrid systems are able to simplify the evaluation procedure of various pathologies in a routine clinical setting. The diagnostic capability of hybrid imaging modalities can be further enhanced by introducing novel and specific imaging biomarkers. The aim of this review is to cover the most recent advancements in radiotracers development for SPECT/CT, PET/CT, and PET/MRI for cardiovascular diseases.
  • loading
  • [1]
    Gerke O, Ehlers K, Motschall E, et al. PET/CT-based response evaluation in cancer—a systematic review of design issues. Mol Imaging Biol 2020; 22: 33−46. doi: 10.1007/s11307-019-01351-4
    Mansour A, Sun ZH. A head-to-head comparison of the coronary calcium score by computed tomography with myocardial perfusion imaging in predicting coronary artery disease. J Geriatr Cardiol 2013; 9: 349−354. doi: 10.3724/SP.J.1263.2012.06291
    Al Moudi M, Sun ZH. Diagnostic value of (18)F-FDG PET in the assessment of myocardial viability in coronary artery disease: A comparative study with (99m)Tc SPECT and echocardiography. J Geriatr Cardiol 2014; 11: 229−236.
    Flotats A, Knuuti J, Gutberlet M, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 2011; 38: 201−212. doi: 10.1007/s00259-010-1586-y
    Nappi C, Altiero M, Imbriaco M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur J Nucl Med Mol Imaging 2015; 42: 1025−31. doi: 10.1007/s00259-015-3036-3
    Imbriaco M, Nappi C, Ponsiglione A, et al. Hybrid positron emission tomography-magnetic resonance imaging for assessing different stages of cardiac impairment in patients with Anderson–Fabry disease: AFFINITY study group. Eur Hear J - Cardiovasc Imaging 2019; 20: 1004−1011. doi: 10.1093/ehjci/jez039
    Nensa F, Bamberg F, Rischpler C, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol 2018; 28: 4086−4101. doi: 10.1007/s00330-017-5008-4
    Sogbein OO, Pelletier-Galarneau M, Schindler TH, et al. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int 2014; 2014: 942960.
    Glasenapp A, Hess A, Thackeray JT. Molecular imaging in nuclear cardiology: Pathways to individual precision medicine. J Nucl Cardiol 2020; 27: 2195−2201. doi: 10.1007/s12350-020-02319-6
    Barron H V, Harr SD, Radford MJ, et al. The association between white blood cell count and acute myocardial infarction mortality in patients ≥ 65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol 2001; 38: 1654−1661. doi: 10.1016/S0735-1097(01)01613-8
    Figueroa AL, Takx RAP, MacNabb MH, et al. Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ Cardiovasc Imaging 2016; 9: e004043.
    Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide image-guided repair of the heart. JACC Cardiovasc Imaging 2020; 13: 2415−2429. doi: 10.1016/j.jcmg.2019.11.007
    Borchert T, Beitar L, Langer LBN, et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol. Published online first: October 28, 2019. DOI: 10.1007/s12350-019-01929-z.
    Thackeray JT, Bengel FM. Molecular imaging of myocardial inflammation with positron emission tomography post-ischemia: a determinant of subsequent remodeling or recovery. JACC Cardiovasc Imaging 2018; 11: 1340−1355. doi: 10.1016/j.jcmg.2018.05.026
    Liu Y, Li W, Luehmann HP, et al. Noninvasive imaging of CCR2(+) cells in ischemia-reperfusion injury after lung transplantation. Am J Transplant 2016; 16: 3016−3023. doi: 10.1111/ajt.13907
    Heo GS, Kopecky B, Sultan D, et al. Molecular imaging visualizes recruitment of inflammatory monocytes and macrophages to the injured heart. Circ Res 2019; 124: 881−890. doi: 10.1161/CIRCRESAHA.118.314030
    Clemente-Casares X, Hosseinzadeh S, Barbu I, et al. A CD103+ conventional dendritic cell surveillance system prevents development of overt heart failure during subclinical viral myocarditis. Immunity 2017; 47: 974−989.e8. doi: 10.1016/j.immuni.2017.10.011
    Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5: 212.
    Hyafil F, Pelisek J, Laitinen I, et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-Pentixafor for PET. J Nucl Med 2017; 58: 499−506. doi: 10.2967/jnumed.116.179663
    Li X, Yu W, Wollenweber T, et al. [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur J Nucl Med Mol Imaging 2019; 46: 1616−1625. doi: 10.1007/s00259-019-04322-7
    Reubi J, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 2001; 28: 836−846. doi: 10.1007/s002590100541
    Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 2011; 52: 1864−1870. doi: 10.2967/jnumed.111.091165
    Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET imaging. J Am Coll Cardiol 2017; 69: 1774−1791.
    Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med 1972; 2: 31−37. doi: 10.1016/S0001-2998(72)80005-9
    Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010; 51: 1826−1829. doi: 10.2967/jnumed.110.077933
    Creager MD, Hohl T, Hutcheson JD, et al. (18)F-fluoride signal amplification identifies microcalcifications associated with atherosclerotic plaque instability in positron emission tomography/computed tomography Images. Circ Cardiovasc Imaging 2019; 12: e007835.
    Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962; 3: 332−334.
    Doris MK, Meah MN, Moss AJ, et al. Coronary 18 F-fluoride uptake and progression of coronary artery calcification. Circ Cardiovasc Imaging 2020; 13: 1−11. doi: 10.1007/s12410-019-9522-4
    Dweck MR, Chow MWL, Joshi N V, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol 2012; 59: 1539−1548. doi: 10.1016/j.jacc.2011.12.037
    Tzolos E, Dweck MR. 18 F-Sodium Fluoride (18 F-NaF) for imaging microcalcification activity in the cardiovascular system. Arterioscler Thromb Vasc Biol 2020; 40: 1620−1626. doi: 10.1161/ATVBAHA.120.313785
    Hara H, Takeda N, Komuro I. Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regen 2017; 37: 13. doi: 10.1186/s41232-017-0046-5
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18: 1028−1040. doi: 10.1038/nm.2807
    Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail Rev 2014; 19: 173−185. doi: 10.1007/s10741-012-9365-4
    Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2009; 2: 437−443.
    de Boer RA, De Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 2019; 21: 272−285.
    Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018; 59: 1415−1422. doi: 10.2967/jnumed.118.210443
    Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 2018; 59: 1423−1429. doi: 10.2967/jnumed.118.210435
    Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci 1990; 87: 7235−7239. doi: 10.1073/pnas.87.18.7235
    Tillmanns J, Hoffmann D, Habbaba Y, et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 2015; 87: 194−203. doi: 10.1016/j.yjmcc.2015.08.016
    Levy MT, McCaughan GW, Abbott CA, et al. Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999; 29: 1768−1778. doi: 10.1002/hep.510290631
    Varasteh Z, Mohanta S, Robu S, et al. Molecular imaging of fibroblast activity after myocardial infarction using a 68 Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med 2019; 60: 1743−1749. doi: 10.2967/jnumed.119.226993
    Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 2011; 89: 265−272. doi: 10.1093/cvr/cvq308
    Siebermair J, Köhler MI, Kupusovic J, et al. Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a potential novel biomarker of cardiac injury/remodeling. J Nucl Cardiol 2021; 28: 812−821. doi: 10.1007/s12350-020-02307-w
    Haslbauer JD, Lindner S, Valbuena-Lopez S, et al. CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping. Int J Cardiol 2019; 275: 179−186. doi: 10.1016/j.ijcard.2018.10.023
    Sasano T, Abraham MR, Chang KC, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008; 51: 2266−2275. doi: 10.1016/j.jacc.2008.02.062
    Fallavollita JA, Heavey BM, Luisi AJJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014; 63: 141−149. doi: 10.1016/j.jacc.2013.07.096
    Higuchi T, Yousefi BH, Reder S, et al. Myocardial Kinetics of a Novel [(18)F]-Labeled Sympathetic Nerve PET Tracer LMI1195 in the Isolated Perfused Rabbit Heart. JACC Cardiovasc Imaging 2015; 8: 1229−1231.
    Fukushima K, Bravo PE, Higuchi T, et al. Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J Am Coll Cardiol 2012; 60: 2527−2534. doi: 10.1016/j.jacc.2012.09.023
    Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: 82−97.
    Sun Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 2010; 48: 483−489. doi: 10.1016/j.yjmcc.2009.08.002
    Wong DF, Kuwabara H, Horti AG, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage 2010; 52: 1505−1513. doi: 10.1016/j.neuroimage.2010.04.034
    Fukushima K, Bravo PE, Higuchi T, et al. Molecular PET/CT imaging of cardiac angiotensin II type 1 receptors. J Am Coll Cardiol 2013; 60: 2527−34.
    Valenta I, Pacher P, Dilsizian V, Schindler TH. Novel myocardial PET/CT receptor imaging and potential therapeutic targets. Curr Cardiol Rep 2019; 21: 55. doi: 10.1007/s11886-019-1148-2
    Higuchi T, Fukushima K, Xia J, et al. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury. J Nucl Med 2010; 51: 1956−1961. doi: 10.2967/jnumed.110.079855
    Fish KM, Hajjar RJ. Myocardial cannabinoid receptor imaging in obesity. JACC Cardiovasc Imaging 2018; 11: 333−335. doi: 10.1016/j.jcmg.2017.12.001
    Chen X, Werner RA, Javadi MS, et al. Radionuclide imaging of neurohormonal system of the heart. Theranostics 2015; 5: 545−558. doi: 10.7150/thno.10900
    Harms HJ, Lubberink M, De Haan S, et al. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow-innervation mismatches in patients with ischemic cardiomyopathy. J Nucl Med 2015; 56: 1706−1711. doi: 10.2967/jnumed.115.154377
    Werner RA, Chen X, Maya Y, et al. The impact of ageing on 11C-hydroxyephedrine uptake in the rat heart. Sci Rep 2018; 8: 11120. doi: 10.1038/s41598-018-29509-0
    Kies P, Wichter T, Schäfers M, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation 2004; 110: 3017−3022. doi: 10.1161/01.CIR.0000146920.35020.44
    Schäfers M, Lerch H, Wichter T, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998; 32: 181−186. doi: 10.1016/S0735-1097(98)00213-7
    Mazzadi AN, André-Fouët X, Duisit J, et al. Cardiac retention of [11 C]HED in genotyped long QT patients: a potential amplifier role for severity of the disease. Am J Physiol Circ Physiol 2003; 285: H1286−H1293. doi: 10.1152/ajpheart.00276.2003
    Böhm M, La Rosée K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995; 25: 146−153. doi: 10.1016/0735-1097(94)00353-R
    Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 2009; 27: 311−327. doi: 10.1016/j.ccl.2008.12.007
    Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18 F-labeled cardiac neuronal PET Imaging agent, in cells and animal models. Circ Cardiovasc Imaging 2011; 4: 435−443. doi: 10.1161/CIRCIMAGING.110.962126
    Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med 2014; 55: 1445−1451. doi: 10.2967/jnumed.114.140137
    Rich P. Chemiosmotic coupling: the cost of living. Nature 2003; 421: 583−583. doi: 10.1038/421583a
    Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. Ann Bot 2003; 91: 401. doi: 10.1093/aob/mcg023
    Hüttemann M, Lee I, Pecinova A, et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 2008; 40: 445. doi: 10.1007/s10863-008-9169-3
    Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med 2013; 45: 4−16. doi: 10.3109/07853890.2011.605389
    Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012; 148: 1145−1159. doi: 10.1016/j.cell.2012.02.035
    Rutledge C, Dudley S. Mitochondria and arrhythmias. Expert Rev Cardiovasc Ther 2013; 11: 799−801. doi: 10.1586/14779072.2013.811969
    Alpert NM, Guehl N, Ptaszek L, et al. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One 2018; 13: e0190968. doi: 10.1371/journal.pone.0190968
    Pelletier-Galarneau M, Petibon Y, Ma C, et al. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur J Nucl Med Mol Imaging 2021; 48: 414−420. doi: 10.1007/s00259-020-04878-9
    Madar I, Huang Y, Ravert H, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 2009; 50: 774−780. doi: 10.2967/jnumed.108.061283
    Falk RH, Alexander KM, Liao R, Dorbala S. AL (Light-Chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol 2016; 68: 1323−1341. doi: 10.1016/j.jacc.2016.06.053
    Dungu JN. Cardiac amyloid—an update. Eur Cardiol Rev 2015; 10: 113. doi: 10.15420/ecr.2015.10.2.113
    Gallegos C, Miller EJ. Advances in PET-based cardiac amyloid radiotracers. Curr Cardiol Rep 2020; 22: 40. doi: 10.1007/s11886-020-01284-3
    Benadiba M, Luurtsema G, Wichert-Ana L, Buchpigel CA, Filho GB. New molecular targets for PET and SPECT imaging in neurodegenerative diseases. Rev Bras Psiquiatr 2012; 34: 125−148.
    Antoni G, Lubberink M, Estrada S, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013; 54: 213−20. doi: 10.2967/jnumed.111.102053
    Lee SP, Lee ES, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2015; 8: 50−59. doi: 10.1016/j.jcmg.2014.09.018
    Pilebro B, Arvidsson S, Lindqvist P, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 2018; 25: 240−248. doi: 10.1007/s12350-016-0638-5
    Yao T, Li Z. Facile synthesis of TEG-substituted 4-(N-methyl-N-Boc-amino) styrylpyridine and PET imaging agentflorbetapir (AV-45). Synth Commun 2018; 48: 422−427. doi: 10.1080/00397911.2017.1404107
    Dorbala S, Vangala D, Semer J, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014; 41: 1652−1662. doi: 10.1007/s00259-014-2787-6
    Mi-Ae P, F. PR, Anthony B, et al. 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits. Circ Cardiovasc Imaging 2015; 8: e002954.
    Ehman EC, El-Sady MS, Kijewski MF, et al. Early detection of multiorgan light-chain amyloidosis by whole-body 18 F-florbetapir PET/CT. J Nucl Med 2019; 60: 1234−1239. doi: 10.2967/jnumed.118.221770
    Law WP, Wang WYS, Moore PT, et al. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med 2016; 57: 1733−1739. doi: 10.2967/jnumed.115.169870
    Kircher M, Ihne S, Brumberg J, et al. Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 2019; 46: 1407−1416. doi: 10.1007/s00259-019-04290-y
    Van Der Gucht A, Galat A, Rosso J, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol 2016; 23: 846−849. doi: 10.1007/s12350-015-0287-0
    Gagliardi C, Tabacchi E, Bonfiglioli R, et al. Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? J Nucl Cardiol 2017; 24: 746−749. doi: 10.1007/s12350-016-0457-8
    Martineau P, Finnerty V, Giraldeau G, et al. Examining the sensitivity of 18F-NaF PET for the imaging of cardiac amyloidosis. J Nucl Cardiol 2021; 28: 209−218. doi: 10.1007/s12350-019-01675-2
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint