ISSN 1671-5411 CN 11-5329/R
Volume 20 Issue 5
May  2023
Turn off MathJax
Article Contents
Please cite this article as: XU R, WU J, YANG CJ, KANG L, JI YY, LI C, DING ZW, ZOU YZ. A circRNA–miRNA–mRNA network analysis underlying pathogenesis of human heart failure. J Geriatr Cardiol 2023; 20(5): 350−360. DOI: 10.26599/1671-5411.2023.05.004
Citation: Please cite this article as: XU R, WU J, YANG CJ, KANG L, JI YY, LI C, DING ZW, ZOU YZ. A circRNA–miRNA–mRNA network analysis underlying pathogenesis of human heart failure. J Geriatr Cardiol 2023; 20(5): 350−360. DOI: 10.26599/1671-5411.2023.05.004

A circRNA–miRNA–mRNA network analysis underlying pathogenesis of human heart failure

doi: 10.26599/1671-5411.2023.05.004
Funds:  This study was funded by the National Natural Science Foundation of China (81900245, 81730009, 81941002 and 81700256).
All data analyzed in this study came from the public articles[22-26].
None
*The authors contributed equally to this manuscript
More Information
  •  BACKGROUND The molecular mechanisms of heart failure (HF) are still poorly understood. Circular RNA (circRNA) has been discovered in the heart in increasing numbers of studies. The goal of this research is to learn more about the potential roles of circRNAs in HF.  METHODS & RESULTS  We used RNA sequencing data to identify the characteristics of circRNAs expressed in the heart and discovered that the majority of circRNAs screened were less than 2000 nt. Additionally, chromosomes One and Y had the most and least number of circRNAs, respectively. After excluding duplicate host genes and intergenic circRNAs, a total of 238 differentially expressed circRNAs (DECs) and 203 host genes were discovered. However, only four of the 203 host genes of DECs were examined in HF differentially expressed genes. Another study used Gene Oncology analysis of DECs host genes to elucidate the underlying pathogenesis of HF, and it found that binding and catalytic activity accounted for a large portion of DECs. Immune system, metabolism, and signal transduction pathways were significantly enriched. Furthermore, 1052 potentially regulated miRNAs from the top 40 DECs were collected to build a circRNA-miRNA network, and it was discovered that 470 miRNAs can be regulated by multiple circRNAs, while others are regulated by a single circRNA. In addition, a comparison of the top 10 mRNAs in HF and their targeted miRNAs revealed that DDX3Y and UTY were regulated by the most and least circRNA, respectively.  CONCLUSION  These findings demonstrated circRNAs have species and tissue specific expression patterns; while circRNA expression is independent on host genes, the same types of genes in DECs and DEGs worked in HF. Our findings would contribute to a better understanding of the critical roles of circRNAs and lay the groundwork for future studies of HF molecular functions.
  • loading
  • [1]
    Tanai E, Frantz S. Pathophysiology of Heart Failure. Compr Physiol 2015; 6: 187−214.
    [2]
    Birks EJ. Molecular changes after left ventricular assist device support for heart failure. Circ Res 2013; 113: 777−791. doi: 10.1161/CIRCRESAHA.113.301413
    [3]
    Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail 2019; 7: 447−456. doi: 10.1016/j.jchf.2019.03.005
    [4]
    Tschöpe C, Kherad B, Klein O, et al. Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail 2019; 21: 14−22. doi: 10.1002/ejhf.1349
    [5]
    Chen Y, Li C, Tan C, Liu X. Circular RNAs: a new frontier in the study of human diseases. J Med Genet 2016; 53: 359−365. doi: 10.1136/jmedgenet-2016-103758
    [6]
    Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384−388. doi: 10.1038/nature11993
    [7]
    Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large classof animal RNAs with regulatory potency. Nature 2013; 495: 333−338. doi: 10.1038/nature11928
    [8]
    Xing L, Shi Q, Zheng K, et al. Ultrasound-mediated microbubble destruction (ummd) facilitates the deliveryof ca19-9 targeted and paclitaxel loaded mpeg-plga-pll nanoparticles inpancreatic cancer. Theranostics 2016; 6: 1573−1587. doi: 10.7150/thno.15164
    [9]
    Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22: 256−64. doi: 10.1038/nsmb.2959
    [10]
    Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 2017; 27: 626−641. doi: 10.1038/cr.2017.31
    [11]
    Geng HH, Li R, Su YM, et al. The Circular RNA Cdr1 as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 2016; 11: e0151753. doi: 10.1371/journal.pone.0151753
    [12]
    Li MY, Ding W, Tariq MA, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 2018; 8: 5855−5869. doi: 10.7150/thno.27285
    [13]
    Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 2017; 24: 1111−1120. doi: 10.1038/cdd.2017.61
    [14]
    Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy viamodulation of the Pink1/ FAM65B pathway. Cell Death Differ 2019; 26: 1299−1315. doi: 10.1038/s41418-018-0206-4
    [15]
    Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38: 1402−1412.
    [16]
    Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37: 2602−2611. doi: 10.1093/eurheartj/ehv713
    [17]
    Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017; 7: 40342. doi: 10.1038/srep40342
    [18]
    Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 2017; 487: 769−775. doi: 10.1016/j.bbrc.2017.04.044
    [19]
    Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 2017; 7: 39918. doi: 10.1038/srep39918
    [20]
    Salgado-Somoza A, Zhang L, Vausort M, Devaux Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 2017; 17: 33−36.
    [21]
    Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 2017; 39: 454−459. doi: 10.1080/10641963.2016.1273944
    [22]
    Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics Proteomics Bioinformatics 2016; 14: 216−223. doi: 10.1016/j.gpb.2016.02.003
    [23]
    Werfel S, Nothjunge S, Schwarzmayr T, et al. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 2016; 98: 103−107. doi: 10.1016/j.yjmcc.2016.07.007
    [24]
    Khan MA, Reckman YJ, Aufiero S, et al. RBM20 regulates circular RNA production from the titin gene. Circ Res 2016; 119: 996−1003. doi: 10.1161/CIRCRESAHA.116.309568
    [25]
    Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017; 113: 298−309.
    [26]
    Lei W, Feng T, Fang X, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 2018; 9: 56. doi: 10.1186/s13287-018-0793-5
    [27]
    Hu M, Wei X, Li M, et al. Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease. Anatol J Cardiol 2019; 21: 2−10.
    [28]
    Mi H, Muruganujan A, Huang X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14. 0). Nat Protoc 2019; 14: 703−721. doi: 10.1038/s41596-019-0128-8
    [29]
    Jupe S, Fabregat A, Hermjakob H. Expression data analysis with Reactome. Curr Protoc Bioinformatics 2015; 49: 8.20.1−9.
    [30]
    Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4.
    [31]
    Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 2012; 7: 670−85. doi: 10.1038/nprot.2012.004
    [32]
    Zou F, Ding Z, Jiang J, et al. Confirmation and preliminary analysis of circRNAs potentially involved in human intervertebral disc degeneration. Mol Med Rep 2017; 16: 9173−9180. doi: 10.3892/mmr.2017.7718
    [33]
    Li Y, Jiang Q, Ding Z, et al. Identification of a common different gene expression signature in ischemic cardiomyopathy. Genes (Basel) 2018; 9: 56. doi: 10.3390/genes9010056
    [34]
    Watson CJ, Gupta SK, O’Connell E, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 2015; 17: 405−415. doi: 10.1002/ejhf.244
    [35]
    Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 2015; 17: 393−404. doi: 10.1002/ejhf.223
    [36]
    Ding Z, Peng J, Liang Y, et al. Evolution of vertebrate ryanodine receptors family in relation to functional divergence and conservation. Int Heart J 2017; 58: 969−977. doi: 10.1536/ihj.16-558
    [37]
    Zou Y, Liang Y, Gong H, et al. Ryanodine receptor type 2 is required for the development of pressure overload-induced cardiac hypertrophy. Hypertension 2011; 58: 1099−1110. doi: 10.1161/HYPERTENSIONAHA.111.173500
    [38]
    Ding Z, Yuan J, Liang Y, et al. Ryanodine receptor type 2 plays a role in the development of cardiac fibrosis under mechanical stretch through TGFβ-1. Int Heart J 2017; 58: 957−961. doi: 10.1536/ihj.16-572
    [39]
    Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 2017; 18: 984−992.
    [40]
    Yu D, Li Y, Ming Z, et al. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. Peer J 2018; 6: e5011. doi: 10.7717/peerj.5011
    [41]
    Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev 2018; 32: 639−644. doi: 10.1101/gad.314856.118
    [42]
    Gruner H, Cortés-López M, Cooper DA, et al. CircRNA accumulation in the aging mouse brain. Sci Rep 2016; 6: 38907. doi: 10.1038/srep38907
    [43]
    Siede D, Rapti K, Gorska AA, et al. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol 2017; 109: 48−56. doi: 10.1016/j.yjmcc.2017.06.015
    [44]
    Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, et al. Heart inflammation: immune cells roles and roads to the heart. Am J Pathol 2019; 189: 1482−1494. doi: 10.1016/j.ajpath.2019.04.009
    [45]
    Sánchez-Trujillo L, Vázquez-Garza E, Castillo EC, et al. Role of adaptive immunity in the development and progression of heart failure: new evidence. Arch Med Res 2017; 48: 1−11. doi: 10.1016/j.arcmed.2016.12.008
    [46]
    Duan Q, Yang L, Gong W, et al. MicroRNA-214 Is Upregulated in Heart Failure Patients and Suppresses XBP1-Mediated Endothelial Cells Angiogenesis. J Cell Physiol 2015; 230: 1964−1973. doi: 10.1002/jcp.24942
    [47]
    Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124: 1537−1547. doi: 10.1161/CIRCULATIONAHA.111.030932
    [48]
    Yuan J, Liu H, Gao W, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics 2018; 8: 2565−2582. doi: 10.7150/thno.22878
    [49]
    Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66: 22−37. doi: 10.1016/j.molcel.2017.02.017
    [50]
    Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66: 9−21. doi: 10.1016/j.molcel.2017.02.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (34) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return