Citation: | Please cite this article as: Bukhari S. Cardiac amyloidosis: state-of-the-art review. J Geriatr Cardiol 2023; 20(5): 361−375. DOI: 10.26599/1671-5411.2023.05.006 |
[1] |
Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003; 349: 583−596. doi: 10.1056/NEJMra023144
|
[2] |
Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation 2005; 112: 2047−2060. doi: 10.1161/CIRCULATIONAHA.104.489187
|
[3] |
Masri A, Bukhari S, Eisele YS, et al. Molecular imaging of cardiac amyloidosis. J Nucl Med 2020; 61: 965−970. doi: 10.2967/jnumed.120.245381
|
[4] |
González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015; 36: 2585−2594. doi: 10.1093/eurheartj/ehv338
|
[5] |
Castaño A, Narotsky DL, Hamid N, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 2017; 38: 2879−2887. doi: 10.1093/eurheartj/ehx350
|
[6] |
Maurizi N, Rella V, Fumagalli C, et al. Prevalence of cardiac amyloidosis among adult patients referred to tertiary centres with an initial diagnosis of hypertrophic cardiomyopathy. Int J Cardiol 2020; 300: 191−195. doi: 10.1016/j.ijcard.2019.07.051
|
[7] |
Tanskanen M, Peuralinna T, Polvikoski T, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 2008; 40: 232−239. doi: 10.1080/07853890701842988
|
[8] |
Ravichandran S, Lachmann HJ, Wechalekar AD. Epidemiologic and survival trends in amyloidosis, 1987-2019. N Engl J Med 2020; 382: 1567−1568. doi: 10.1056/NEJMc1917321
|
[9] |
Kyle RA, Linos A, Beard CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992; 79: 1817−1822. doi: 10.1182/blood.V79.7.1817.1817
|
[10] |
Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A 2010; 107: 4188−4193. doi: 10.1073/pnas.0912263107
|
[11] |
Palladini G, Hegenbart U, Milani P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014; 124: 2325−2332.
|
[12] |
Grogan M, Scott CG, Kyle RA, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 2016; 68: 1014−1020. doi: 10.1016/j.jacc.2016.06.033
|
[13] |
Pilebro B, Suhr OB, Näslund U, et al. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci 2016; 121: 17−24. doi: 10.3109/03009734.2015.1122687
|
[14] |
Buxbaum J, Jacobson DR, Tagoe C, et al. Transthyretin V122I in African Americans with congestive heart failure. J Am Coll Cardiol 2006; 47: 1724−1725. doi: 10.1016/j.jacc.2006.01.042
|
[15] |
Reilly MM, Staunton H, Harding AE. Familial amyloid polyneuropathy (TTR ala 60) in north west Ireland: a clinical, genetic, and epidemiological study. J Neurol Neurosurg Psychiatry 1995; 59: 45−49. doi: 10.1136/jnnp.59.1.45
|
[16] |
Bonaïti B, Olsson M, Hellman U, et al. TTR familial amyloid polyneuropathy: does a mitochondrial polymorphism entirely explain the parent-of-origin difference in penetrance? Eur J Hum Genet 2010; 18: 948−952. doi: 10.1038/ejhg.2010.36
|
[17] |
Waddington-Cruz M, Wixner J, Amass L, et al. THAOS investigators. Characteristics of patients with late- vs. early-onset Val30Met Transthyretin Amyloidosis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Neurol Ther 2021; 10: 753−766.
|
[18] |
Maurer MS, Hanna M, Grogan M, et al. THAOS Investigators. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol 2016; 68: 161−172. doi: 10.1016/j.jacc.2016.03.596
|
[19] |
Dungu JN, Valencia O, Pinney JH, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 7: 133−142. doi: 10.1016/j.jcmg.2013.08.015
|
[20] |
Griffin JM, Rosenblum H, Maurer MS. Pathophysiology and therapeutic approaches to cardiac amyloidosis. Circ Res 2021; 128: 1554−1575. doi: 10.1161/CIRCRESAHA.121.318187
|
[21] |
Bukhari S, Oliveros E, Parekh H, et al. Epidemiology, mechanisms, and management of atrial fibrillation in cardiac amyloidosis. Curr Probl Cardiol 2022; 48: 101571.
|
[22] |
Oye M, Dhruva P, Kandah F, et al. Cardiac amyloid presenting as cardiogenic shock: case series. Eur Heart J Case Rep 2021; 5: ytab252. doi: 10.1093/ehjcr/ytab252
|
[23] |
Mueller PS, Edwards WD, Gertz MA. Symptomatic ischemic heart disease resulting from obstructive intramural coronary amyloidosis. Am J Med 2000; 109: 181−188. doi: 10.1016/S0002-9343(00)00471-X
|
[24] |
Dorbala S, Vangala D, Bruyere J Jr, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2014; 2: 358−367. doi: 10.1016/j.jchf.2014.03.009
|
[25] |
Nitsche C, Scully PR, Patel KP, et al. Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J Am Coll Cardiol 2021; 77: 128−139.
|
[26] |
Milandri A, Farioli A, Gagliardi C, et al. Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies. Eur J Heart Fail 2020; 22: 507−515. doi: 10.1002/ejhf.1742
|
[27] |
Sperry BW, Reyes BA, Ikram A, et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J Am Coll Cardiol 2018; 72: 2040−2050. doi: 10.1016/j.jacc.2018.07.092
|
[28] |
Westin O, Fosbøl EL, Maurer MS et al. Screening for cardiac amyloidosis 5 to 15 years after surgery for bilateral carpal tunnel syndrome. J Am Coll Cardiol 2022; 80: 967−977. doi: 10.1016/j.jacc.2022.06.026
|
[29] |
Maurer MS, Smiley D, Simsolo E, et al. Analysis of lumbar spine stenosis specimens for identification of amyloid. J Am Geriatr Soc 2022; 70: 3538−3548. doi: 10.1111/jgs.17976
|
[30] |
Geller HI, Singh A, Alexander KM, et al. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis. JAMA 2017; 318: 962−963. doi: 10.1001/jama.2017.9236
|
[31] |
Rubin J, Alvarez J, Teruya S, et al. Hip and knee arthroplasty are common among patients with transthyretin cardiac amyloidosis, occurring years before cardiac amyloid diagnosis: can we identify affected patients earlier? Amyloid 2017; 24: 226−230.
|
[32] |
Dember LM. Amyloidosis-associated kidney disease. J Am Soc Nephrol 2006; 17: 3458−3471. doi: 10.1681/ASN.2006050460
|
[33] |
Sharma A, Bansal S, Jain R. Unique morphology of intratubular light chain casts in multiple myeloma: the amyloid cast nephropathy. Indian J Pathol Microbiol 2014; 57: 629−631. doi: 10.4103/0377-4929.142712
|
[34] |
Cipriani A, De Michieli L, Porcari A et al. Low QRS voltages in cardiac amyloidosis: clinical correlates and prognostic value. JACC Cardio Oncol 2022; 4: 458−470. doi: 10.1016/j.jaccao.2022.08.007
|
[35] |
Cyrille NB, Goldsmith J, Alvarez J, et al. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am J Cardiol 2014; 114: 1089−1093. doi: 10.1016/j.amjcard.2014.07.026
|
[36] |
Dungu J, Sattianayagam PT, Whelan CJ, et al. The electrocardiographic features associated with cardiac amyloidosis of variant transthyretin isoleucine 122 type in Afro-Caribbean patients. Am Heart J 2012; 164: 72−79. doi: 10.1016/j.ahj.2012.04.013
|
[37] |
Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 2005; 95: 535−537. doi: 10.1016/j.amjcard.2004.10.028
|
[38] |
Das MK, Khan B, Jacob S et al. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 2006; 113: 2495−2501. doi: 10.1161/CIRCULATIONAHA.105.595892
|
[39] |
González-López E, Gagliardi C, Dominguez F, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J 2017; 38: 1895−1904. doi: 10.1093/eurheartj/ehx043
|
[40] |
Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol 2016; 68: 1323−1341. doi: 10.1016/j.jacc.2016.06.053
|
[41] |
Nagy D, Révész K, Peskó G, et al. Cardiac amyloidosis with normal wall thickness: prevalence, clinical characteristics and outcome in a retrospective analysis. Biomedicines 2022; 10: 1765. doi: 10.3390/biomedicines10071765
|
[42] |
Vermeer AMC, Janssen A, Boorsma PC, et al. Transthyretin amyloidosis: a phenocopy of hypertrophic cardiomyopathy. Amyloid 2017; 24: 87−91.
|
[43] |
López-Sainz Á, de Haro-Del Moral FJ, Dominguez F, et al. Prevalence of cardiac amyloidosis among elderly patients with systolic heart failure or conduction disorders. Amyloid 2019; 26: 156−163.
|
[44] |
Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging 2017; 10: e005588.
|
[45] |
Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012; 98: 1442−1448. doi: 10.1136/heartjnl-2012-302353
|
[46] |
Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186−193. doi: 10.1161/01.CIR.0000152819.97857.9D
|
[47] |
Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132: 1570−1579. doi: 10.1161/CIRCULATIONAHA.115.016567
|
[48] |
Yang L, Krefting I, Gorovets A, et al. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology 2012; 265: 248−253. doi: 10.1148/radiol.12112783
|
[49] |
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488−497. doi: 10.1016/j.jcmg.2012.11.013
|
[50] |
Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2015; 36: 244−251. doi: 10.1093/eurheartj/ehu444
|
[51] |
Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 2019; 12: 810−819. doi: 10.1016/j.jcmg.2018.02.006
|
[52] |
Banypersad SM, Sado DM, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013; 6: 34−39.
|
[53] |
Martinez-Naharro A, Abdel-Gadir A, Treibel TA, et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc Imaging 2018; 11: 152−154. doi: 10.1016/j.jcmg.2017.02.012
|
[54] |
Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol 2018; 71: 2919−2931. doi: 10.1016/j.jacc.2018.03.536
|
[55] |
Rapezzi C, Gagliardi C, Milandri A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J Nucl Cardiol 2019; 26: 1638−1641. doi: 10.1007/s12350-018-1235-6
|
[56] |
Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 2016; 25: 413−417. doi: 10.1016/j.carpath.2016.07.001
|
[57] |
Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005; 46: 1076−1084. doi: 10.1016/j.jacc.2005.05.073
|
[58] |
Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016; 133: 2404−2412. doi: 10.1161/CIRCULATIONAHA.116.021612
|
[59] |
Bokhari S, Castaño A, Pozniakoff T, et al. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013; 6: 195−201. doi: 10.1161/CIRCIMAGING.112.000132
|
[60] |
Masri A, Bukhari S, Ahmad S, et al. Efficient 1-hour technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 2020; 13: e010249. doi: 10.1161/CIRCIMAGING.119.010249
|
[61] |
Falk RH, Lee VW, Rubinow A, et al. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am J Cardiol 1983; 51: 826−830. doi: 10.1016/S0002-9149(83)80140-4
|
[62] |
Musumeci MB, Cappelli F, Russo D, et al. Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging 2020; 13: 1314−1321. doi: 10.1016/j.jcmg.2019.10.015
|
[63] |
Ardehali H, Qasim A, Cappola T, et al. Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 2004; 147: 919−923. doi: 10.1016/j.ahj.2003.09.020
|
[64] |
Holzmann M, Nicko A, Kühl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008; 118: 1722−1728. doi: 10.1161/CIRCULATIONAHA.107.743427
|
[65] |
Guy CD, Jones CK. Abdominal fat pad aspiration biopsy for tissue confirmation of systemic amyloidosis: specificity, positive predictive value, and diagnostic pitfalls. Diagn Cytopathol 2001; 24: 181−185. doi: 10.1002/1097-0339(200103)24:3<181::AID-DC1037>3.0.CO;2-D
|
[66] |
Takashio S, Yamamuro M, Izumiya Y, et al. Diagnostic utility of cardiac troponin T level in patients with cardiac amyloidosis. ESC Heart Fail 2018; 5: 27−35.
|
[67] |
Gillmore JD, Damy T, Fontana M, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 2018; 39: 2799−2806. doi: 10.1093/eurheartj/ehx589
|
[68] |
Dispenzieri A, Gertz MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004; 22: 3751−3757. doi: 10.1200/JCO.2004.03.029
|
[69] |
Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 2012; 30: 989−995. doi: 10.1200/JCO.2011.38.5724
|
[70] |
Gilstrap LG, Dominici F, Wang Y, et al. Epidemiology of cardiac amyloidosis-associated heart failure hospitalizations among fee-for-service medicare beneficiaries in the United States. Circ Heart Fail 2019; 12: e005407. doi: 10.1161/CIRCHEARTFAILURE.118.005407
|
[71] |
Sperry BW, Saeed IM, Raza S, et al. Increasing rate of hospital admissions in patients with amyloidosis (from the National Inpatient Sample). Am J Cardiol 2019; 124: 1765−1769. doi: 10.1016/j.amjcard.2019.08.045
|
[72] |
Chan N, Hanna M, Maurer MS. The Wiggers Diagram: hemodynamic changes in cardiac amyloidosis. J Card Fail 2023; 29: 217−219. doi: 10.1016/j.cardfail.2022.06.008
|
[73] |
Gertz MA, Falk RH, Skinner M, et al. Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am J Cardiol 1985; 55: 1645. doi: 10.1016/0002-9149(85)90995-6
|
[74] |
Gertz MA, Skinner M, Connors LH, et al. Selective binding of nifedipine to amyloid fibrils. Am J Cardiol 1985; 55: 1646. doi: 10.1016/0002-9149(85)90996-8
|
[75] |
Rubinow A, Skinner M, Cohen AS. Digoxin sensitivity in amyloid cardiomyopathy. Circulation 1981; 63: 1285−1288. doi: 10.1161/01.CIR.63.6.1285
|
[76] |
Muchtar E, Gertz MA, Kumar SK, et al. Digoxin use in systemic light-chain (AL) amyloidosis: contra-indicated or cautious use? Amyloid 2018; 25: 86−92. doi: 10.1080/13506129.2018.1449744
|
[77] |
Bukhari S, Khan SZ, Bashir Z. Atrial fibrillation, thromboembolic risk, and anticoagulation in cardiac amyloidosis: a review. J Card Fail 2023; 29: 76−86. doi: 10.1016/j.cardfail.2022.08.008
|
[78] |
Bukhari S, Barakat AF, Eisele YS, et al. Prevalence of atrial fibrillation and thromboembolic risk in wild-type transthyretin amyloid cardiomyopathy. Circulation 2021; 143: 1335−1337. doi: 10.1161/CIRCULATIONAHA.120.052136
|
[79] |
El-Am EA, Dispenzieri A, Melduni RM, et al. Direct current cardioversion of atrial arrhythmias in adults with cardiac amyloidosis. J Am Coll Cardiol 2019; 73: 589−597.
|
[80] |
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145: e876−e894.
|
[81] |
Chung FP, Lin YJ, Kuo L, et al. Catheter ablation of ventricular tachycardia/fibrillation in a patient with right ventricular amyloidosis with initial manifestations mimicking arrhythmogenic right ventricular dysplasia/cardiomyopathy. Korean Circ J 2017; 47: 282−285. doi: 10.4070/kcj.2016.0328
|
[82] |
Lin G, Dispenzieri A, Kyle R, et al. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol 2013; 24: 793−798. doi: 10.1111/jce.12123
|
[83] |
Higgins AY, Annapureddy AR, Wang Y, et al. Survival following implantable cardioverter-defibrillator implantation in patients with amyloid cardiomyopathy. J Am Heart Assoc 2020; 9: e016038. doi: 10.1161/JAHA.120.016038
|
[84] |
Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2018; 15: e73−e189. doi: 10.1016/j.hrthm.2017.10.036
|
[85] |
Donnellan E, Wazni OM, Saliba WI, et al. Prevalence, incidence, and impact on mortality of conduction system disease in transthyretin cardiac amyloidosis. Am J Cardiol 2020; 128: 140−146. doi: 10.1016/j.amjcard.2020.05.021
|
[86] |
Rehorn MR, Loungani RS, Black-Maier E, et al. Cardiac implantable electronic devices: a window into the evolution of conduction disease in cardiac amyloidosis. JACC Clin Electrophysiol 2020; 6: 1144−1154. doi: 10.1016/j.jacep.2020.04.020
|
[87] |
Donnellan E, Wazni OM, Saliba WI, et al. Cardiac devices in patients with transthyretin amyloidosis: Impact on functional class, left ventricular function, mitral regurgitation, and mortality. J Cardiovasc Electrophysiol 2019; 30: 2427−2432. doi: 10.1111/jce.14180
|
[88] |
Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494−498. doi: 10.1038/35078107
|
[89] |
Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379: 11−21. doi: 10.1056/NEJMoa1716153
|
[90] |
Crooke ST, Wang S, Vickers TA, et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35: 230−237. doi: 10.1038/nbt.3779
|
[91] |
Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379: 22−31. doi: 10.1056/NEJMoa1716793
|
[92] |
Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018; 379: 1007−1016. doi: 10.1056/NEJMoa1805689
|
[93] |
Berk JL, Suhr OB, Obici L, et al. Diflunisal Trial Consortium. Repurposing diflunisal for familial amyloid polyneuropathy:a randomized clinical trial. JAMA 2013; 310: 2658−2667.
|
[94] |
Sekijima Y, Tojo K, Morita H, et al. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid 2015; 22: 79−83. doi: 10.3109/13506129.2014.997872
|
[95] |
Penchala SC, Connelly S, Wang Y, et al. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc Natl Acad Sci U S A 2013; 110: 9992−9997. doi: 10.1073/pnas.1300761110
|
[96] |
Judge DP, Heitner SB, Falk RH, et al. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 2019; 74: 285−295. doi: 10.1016/j.jacc.2019.03.012
|
[97] |
Karlstedt E, Jimenez-Zepeda V, Howlett JG, et al. Clinical experience with the use of doxycycline and ursodeoxycholic acid for the treatment of transthyretin cardiac amyloidosis. J Card Fail 2019; 25: 147−153. doi: 10.1016/j.cardfail.2019.01.006
|
[98] |
Wixner J, Pilebro B, Lundgren HE, et al. Effect of doxycycline and ursodeoxycholic acid on transthyretin amyloidosis. Amyloid 2017; 24: 78−79.
|
[99] |
Hasib Sidiqi M, Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021. Blood Cancer J 2021; 11: 90. doi: 10.1038/s41408-021-00483-7
|
[100] |
Dispenzieri A, Buadi F, Kumar SK, et al. Treatment of immunoglobulin light chain amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement. Mayo Clin Proc 2015; 90: 1054−1081. doi: 10.1016/j.mayocp.2015.06.009
|